This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphisms preserve initial segments. Proposition 6.31(2) of TakeutiZaring p. 33. (Contributed by NM, 20-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoini | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima2 | ⊢ ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 } | |
| 2 | elin | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) | |
| 3 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 4 | f1ofo | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –onto→ 𝐵 ) | |
| 5 | forn | ⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ran 𝐻 = 𝐵 ) | |
| 6 | 5 | eleq2d | ⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ( 𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵 ) ) |
| 7 | 3 4 6 | 3syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ran 𝐻 ↔ 𝑦 ∈ 𝐵 ) ) |
| 8 | f1ofn | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) | |
| 9 | fvelrnb | ⊢ ( 𝐻 Fn 𝐴 → ( 𝑦 ∈ ran 𝐻 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) | |
| 10 | 3 8 9 | 3syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ran 𝐻 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
| 11 | 7 10 | bitr3d | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
| 12 | fvex | ⊢ ( 𝐻 ‘ 𝐷 ) ∈ V | |
| 13 | vex | ⊢ 𝑦 ∈ V | |
| 14 | 13 | eliniseg | ⊢ ( ( 𝐻 ‘ 𝐷 ) ∈ V → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 15 | 12 14 | mp1i | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 16 | 11 15 | anbi12d | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 18 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ) | |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | 19 | eliniseg | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ↔ 𝑥 𝑅 𝐷 ) ) |
| 21 | 20 | anbi2d | ⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐷 ) ) ) |
| 22 | 18 21 | bitrid | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐷 ) ) ) |
| 23 | 22 | anbi1d | ⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐷 ) ∧ 𝑥 𝐻 𝑦 ) ) ) |
| 24 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝐷 ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ) ) | |
| 25 | 23 24 | bitrdi | ⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ) ) ) |
| 27 | isorel | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝑅 𝐷 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) | |
| 28 | 3 8 | syl | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 Fn 𝐴 ) |
| 29 | fnbrfvb | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐻 𝑦 ) ) | |
| 30 | 29 | bicomd | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
| 31 | 28 30 | sylan | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
| 32 | 31 | adantrr | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( 𝑥 𝐻 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) |
| 33 | 27 32 | anbi12d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ∧ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ) ) |
| 34 | ancom | ⊢ ( ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ∧ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) | |
| 35 | breq1 | ⊢ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ↔ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) | |
| 36 | 35 | pm5.32i | ⊢ ( ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 37 | 34 36 | bitri | ⊢ ( ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝐷 ) ∧ ( 𝐻 ‘ 𝑥 ) = 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) |
| 38 | 33 37 | bitrdi | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 39 | 38 | exp32 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( 𝐷 ∈ 𝐴 → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) ) |
| 40 | 39 | com23 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐷 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) ) |
| 41 | 40 | imp | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) |
| 42 | 41 | pm5.32d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝐷 ∧ 𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) |
| 43 | 26 42 | bitrd | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ∧ 𝑥 𝐻 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) ) |
| 44 | 43 | rexbidv2 | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 45 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) | |
| 46 | 44 45 | bitrdi | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑥 ) = 𝑦 ∧ 𝑦 𝑆 ( 𝐻 ‘ 𝐷 ) ) ) ) |
| 47 | 17 46 | bitr4d | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ) ) |
| 48 | 2 47 | bitrid | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ↔ ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 ) ) |
| 49 | 48 | eqabdv | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) 𝑥 𝐻 𝑦 } ) |
| 50 | 1 49 | eqtr4id | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐷 ∈ 𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝐷 } ) ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝐷 ) } ) ) ) |