This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of Suppes p. 97. (Contributed by NM, 10-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domsdomtr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶 ) | |
| 2 | domtr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶 ) → 𝐴 ≼ 𝐶 ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≼ 𝐶 ) |
| 4 | simpr | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐵 ≺ 𝐶 ) | |
| 5 | ensym | ⊢ ( 𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴 ) | |
| 6 | simpl | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≼ 𝐵 ) | |
| 7 | endomtr | ⊢ ( ( 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → 𝐶 ≼ 𝐵 ) | |
| 8 | 5 6 7 | syl2anr | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) ∧ 𝐴 ≈ 𝐶 ) → 𝐶 ≼ 𝐵 ) |
| 9 | domnsym | ⊢ ( 𝐶 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐶 ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) ∧ 𝐴 ≈ 𝐶 ) → ¬ 𝐵 ≺ 𝐶 ) |
| 11 | 10 | ex | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → ( 𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶 ) ) |
| 12 | 4 11 | mt2d | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → ¬ 𝐴 ≈ 𝐶 ) |
| 13 | brsdom | ⊢ ( 𝐴 ≺ 𝐶 ↔ ( 𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶 ) ) | |
| 14 | 3 12 13 | sylanbrc | ⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶 ) → 𝐴 ≺ 𝐶 ) |