This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for infxpen . (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leweon.1 | |- L = { <. x , y >. | ( ( x e. ( On X. On ) /\ y e. ( On X. On ) ) /\ ( ( 1st ` x ) e. ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) e. ( 2nd ` y ) ) ) ) } |
|
| r0weon.1 | |- R = { <. z , w >. | ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) } |
||
| infxpen.1 | |- Q = ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) |
||
| infxpen.2 | |- ( ph <-> ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) ) |
||
| infxpen.3 | |- M = ( ( 1st ` w ) u. ( 2nd ` w ) ) |
||
| infxpen.4 | |- J = OrdIso ( Q , ( a X. a ) ) |
||
| Assertion | infxpenlem | |- ( ( A e. On /\ _om C_ A ) -> ( A X. A ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leweon.1 | |- L = { <. x , y >. | ( ( x e. ( On X. On ) /\ y e. ( On X. On ) ) /\ ( ( 1st ` x ) e. ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) e. ( 2nd ` y ) ) ) ) } |
|
| 2 | r0weon.1 | |- R = { <. z , w >. | ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) } |
|
| 3 | infxpen.1 | |- Q = ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) |
|
| 4 | infxpen.2 | |- ( ph <-> ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) ) |
|
| 5 | infxpen.3 | |- M = ( ( 1st ` w ) u. ( 2nd ` w ) ) |
|
| 6 | infxpen.4 | |- J = OrdIso ( Q , ( a X. a ) ) |
|
| 7 | sseq2 | |- ( a = m -> ( _om C_ a <-> _om C_ m ) ) |
|
| 8 | xpeq12 | |- ( ( a = m /\ a = m ) -> ( a X. a ) = ( m X. m ) ) |
|
| 9 | 8 | anidms | |- ( a = m -> ( a X. a ) = ( m X. m ) ) |
| 10 | id | |- ( a = m -> a = m ) |
|
| 11 | 9 10 | breq12d | |- ( a = m -> ( ( a X. a ) ~~ a <-> ( m X. m ) ~~ m ) ) |
| 12 | 7 11 | imbi12d | |- ( a = m -> ( ( _om C_ a -> ( a X. a ) ~~ a ) <-> ( _om C_ m -> ( m X. m ) ~~ m ) ) ) |
| 13 | sseq2 | |- ( a = A -> ( _om C_ a <-> _om C_ A ) ) |
|
| 14 | xpeq12 | |- ( ( a = A /\ a = A ) -> ( a X. a ) = ( A X. A ) ) |
|
| 15 | 14 | anidms | |- ( a = A -> ( a X. a ) = ( A X. A ) ) |
| 16 | id | |- ( a = A -> a = A ) |
|
| 17 | 15 16 | breq12d | |- ( a = A -> ( ( a X. a ) ~~ a <-> ( A X. A ) ~~ A ) ) |
| 18 | 13 17 | imbi12d | |- ( a = A -> ( ( _om C_ a -> ( a X. a ) ~~ a ) <-> ( _om C_ A -> ( A X. A ) ~~ A ) ) ) |
| 19 | vex | |- a e. _V |
|
| 20 | 19 19 | xpex | |- ( a X. a ) e. _V |
| 21 | simpll | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> a e. On ) |
|
| 22 | 4 21 | sylbi | |- ( ph -> a e. On ) |
| 23 | onss | |- ( a e. On -> a C_ On ) |
|
| 24 | 22 23 | syl | |- ( ph -> a C_ On ) |
| 25 | xpss12 | |- ( ( a C_ On /\ a C_ On ) -> ( a X. a ) C_ ( On X. On ) ) |
|
| 26 | 24 24 25 | syl2anc | |- ( ph -> ( a X. a ) C_ ( On X. On ) ) |
| 27 | 1 2 | r0weon | |- ( R We ( On X. On ) /\ R Se ( On X. On ) ) |
| 28 | 27 | simpli | |- R We ( On X. On ) |
| 29 | wess | |- ( ( a X. a ) C_ ( On X. On ) -> ( R We ( On X. On ) -> R We ( a X. a ) ) ) |
|
| 30 | 26 28 29 | mpisyl | |- ( ph -> R We ( a X. a ) ) |
| 31 | weinxp | |- ( R We ( a X. a ) <-> ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) We ( a X. a ) ) |
|
| 32 | 30 31 | sylib | |- ( ph -> ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) We ( a X. a ) ) |
| 33 | weeq1 | |- ( Q = ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) -> ( Q We ( a X. a ) <-> ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) We ( a X. a ) ) ) |
|
| 34 | 3 33 | ax-mp | |- ( Q We ( a X. a ) <-> ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) We ( a X. a ) ) |
| 35 | 32 34 | sylibr | |- ( ph -> Q We ( a X. a ) ) |
| 36 | 6 | oiiso | |- ( ( ( a X. a ) e. _V /\ Q We ( a X. a ) ) -> J Isom _E , Q ( dom J , ( a X. a ) ) ) |
| 37 | 20 35 36 | sylancr | |- ( ph -> J Isom _E , Q ( dom J , ( a X. a ) ) ) |
| 38 | isof1o | |- ( J Isom _E , Q ( dom J , ( a X. a ) ) -> J : dom J -1-1-onto-> ( a X. a ) ) |
|
| 39 | f1ocnv | |- ( J : dom J -1-1-onto-> ( a X. a ) -> `' J : ( a X. a ) -1-1-onto-> dom J ) |
|
| 40 | f1of1 | |- ( `' J : ( a X. a ) -1-1-onto-> dom J -> `' J : ( a X. a ) -1-1-> dom J ) |
|
| 41 | 37 38 39 40 | 4syl | |- ( ph -> `' J : ( a X. a ) -1-1-> dom J ) |
| 42 | f1f1orn | |- ( `' J : ( a X. a ) -1-1-> dom J -> `' J : ( a X. a ) -1-1-onto-> ran `' J ) |
|
| 43 | 20 | f1oen | |- ( `' J : ( a X. a ) -1-1-onto-> ran `' J -> ( a X. a ) ~~ ran `' J ) |
| 44 | 41 42 43 | 3syl | |- ( ph -> ( a X. a ) ~~ ran `' J ) |
| 45 | f1ofn | |- ( `' J : ( a X. a ) -1-1-onto-> dom J -> `' J Fn ( a X. a ) ) |
|
| 46 | 37 38 39 45 | 4syl | |- ( ph -> `' J Fn ( a X. a ) ) |
| 47 | 37 | adantr | |- ( ( ph /\ w e. ( a X. a ) ) -> J Isom _E , Q ( dom J , ( a X. a ) ) ) |
| 48 | 38 39 40 | 3syl | |- ( J Isom _E , Q ( dom J , ( a X. a ) ) -> `' J : ( a X. a ) -1-1-> dom J ) |
| 49 | cnvimass | |- ( `' Q " { w } ) C_ dom Q |
|
| 50 | inss2 | |- ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) C_ ( ( a X. a ) X. ( a X. a ) ) |
|
| 51 | 3 50 | eqsstri | |- Q C_ ( ( a X. a ) X. ( a X. a ) ) |
| 52 | dmss | |- ( Q C_ ( ( a X. a ) X. ( a X. a ) ) -> dom Q C_ dom ( ( a X. a ) X. ( a X. a ) ) ) |
|
| 53 | 51 52 | ax-mp | |- dom Q C_ dom ( ( a X. a ) X. ( a X. a ) ) |
| 54 | dmxpid | |- dom ( ( a X. a ) X. ( a X. a ) ) = ( a X. a ) |
|
| 55 | 53 54 | sseqtri | |- dom Q C_ ( a X. a ) |
| 56 | 49 55 | sstri | |- ( `' Q " { w } ) C_ ( a X. a ) |
| 57 | f1ores | |- ( ( `' J : ( a X. a ) -1-1-> dom J /\ ( `' Q " { w } ) C_ ( a X. a ) ) -> ( `' J |` ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) ) |
|
| 58 | 48 56 57 | sylancl | |- ( J Isom _E , Q ( dom J , ( a X. a ) ) -> ( `' J |` ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) ) |
| 59 | 20 20 | xpex | |- ( ( a X. a ) X. ( a X. a ) ) e. _V |
| 60 | 59 | inex2 | |- ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) e. _V |
| 61 | 3 60 | eqeltri | |- Q e. _V |
| 62 | 61 | cnvex | |- `' Q e. _V |
| 63 | 62 | imaex | |- ( `' Q " { w } ) e. _V |
| 64 | 63 | f1oen | |- ( ( `' J |` ( `' Q " { w } ) ) : ( `' Q " { w } ) -1-1-onto-> ( `' J " ( `' Q " { w } ) ) -> ( `' Q " { w } ) ~~ ( `' J " ( `' Q " { w } ) ) ) |
| 65 | 47 58 64 | 3syl | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) ~~ ( `' J " ( `' Q " { w } ) ) ) |
| 66 | sseqin2 | |- ( ( `' Q " { w } ) C_ ( a X. a ) <-> ( ( a X. a ) i^i ( `' Q " { w } ) ) = ( `' Q " { w } ) ) |
|
| 67 | 56 66 | mpbi | |- ( ( a X. a ) i^i ( `' Q " { w } ) ) = ( `' Q " { w } ) |
| 68 | 67 | imaeq2i | |- ( `' J " ( ( a X. a ) i^i ( `' Q " { w } ) ) ) = ( `' J " ( `' Q " { w } ) ) |
| 69 | isocnv | |- ( J Isom _E , Q ( dom J , ( a X. a ) ) -> `' J Isom Q , _E ( ( a X. a ) , dom J ) ) |
|
| 70 | 47 69 | syl | |- ( ( ph /\ w e. ( a X. a ) ) -> `' J Isom Q , _E ( ( a X. a ) , dom J ) ) |
| 71 | simpr | |- ( ( ph /\ w e. ( a X. a ) ) -> w e. ( a X. a ) ) |
|
| 72 | isoini | |- ( ( `' J Isom Q , _E ( ( a X. a ) , dom J ) /\ w e. ( a X. a ) ) -> ( `' J " ( ( a X. a ) i^i ( `' Q " { w } ) ) ) = ( dom J i^i ( `' _E " { ( `' J ` w ) } ) ) ) |
|
| 73 | 70 71 72 | syl2anc | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J " ( ( a X. a ) i^i ( `' Q " { w } ) ) ) = ( dom J i^i ( `' _E " { ( `' J ` w ) } ) ) ) |
| 74 | fvex | |- ( `' J ` w ) e. _V |
|
| 75 | 74 | epini | |- ( `' _E " { ( `' J ` w ) } ) = ( `' J ` w ) |
| 76 | 75 | ineq2i | |- ( dom J i^i ( `' _E " { ( `' J ` w ) } ) ) = ( dom J i^i ( `' J ` w ) ) |
| 77 | 6 | oicl | |- Ord dom J |
| 78 | f1of | |- ( `' J : ( a X. a ) -1-1-onto-> dom J -> `' J : ( a X. a ) --> dom J ) |
|
| 79 | 37 38 39 78 | 4syl | |- ( ph -> `' J : ( a X. a ) --> dom J ) |
| 80 | 79 | ffvelcdmda | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) e. dom J ) |
| 81 | ordelss | |- ( ( Ord dom J /\ ( `' J ` w ) e. dom J ) -> ( `' J ` w ) C_ dom J ) |
|
| 82 | 77 80 81 | sylancr | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) C_ dom J ) |
| 83 | sseqin2 | |- ( ( `' J ` w ) C_ dom J <-> ( dom J i^i ( `' J ` w ) ) = ( `' J ` w ) ) |
|
| 84 | 82 83 | sylib | |- ( ( ph /\ w e. ( a X. a ) ) -> ( dom J i^i ( `' J ` w ) ) = ( `' J ` w ) ) |
| 85 | 76 84 | eqtrid | |- ( ( ph /\ w e. ( a X. a ) ) -> ( dom J i^i ( `' _E " { ( `' J ` w ) } ) ) = ( `' J ` w ) ) |
| 86 | 73 85 | eqtrd | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J " ( ( a X. a ) i^i ( `' Q " { w } ) ) ) = ( `' J ` w ) ) |
| 87 | 68 86 | eqtr3id | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J " ( `' Q " { w } ) ) = ( `' J ` w ) ) |
| 88 | 65 87 | breqtrd | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) ~~ ( `' J ` w ) ) |
| 89 | 88 | ensymd | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) ~~ ( `' Q " { w } ) ) |
| 90 | fvex | |- ( 1st ` w ) e. _V |
|
| 91 | fvex | |- ( 2nd ` w ) e. _V |
|
| 92 | 90 91 | unex | |- ( ( 1st ` w ) u. ( 2nd ` w ) ) e. _V |
| 93 | 5 92 | eqeltri | |- M e. _V |
| 94 | 93 | sucex | |- suc M e. _V |
| 95 | 94 94 | xpex | |- ( suc M X. suc M ) e. _V |
| 96 | xpss | |- ( a X. a ) C_ ( _V X. _V ) |
|
| 97 | simp3 | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z e. ( `' Q " { w } ) ) |
|
| 98 | vex | |- z e. _V |
|
| 99 | 98 | eliniseg | |- ( w e. _V -> ( z e. ( `' Q " { w } ) <-> z Q w ) ) |
| 100 | 99 | elv | |- ( z e. ( `' Q " { w } ) <-> z Q w ) |
| 101 | 97 100 | sylib | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z Q w ) |
| 102 | 3 | breqi | |- ( z Q w <-> z ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) w ) |
| 103 | brin | |- ( z ( R i^i ( ( a X. a ) X. ( a X. a ) ) ) w <-> ( z R w /\ z ( ( a X. a ) X. ( a X. a ) ) w ) ) |
|
| 104 | 102 103 | bitri | |- ( z Q w <-> ( z R w /\ z ( ( a X. a ) X. ( a X. a ) ) w ) ) |
| 105 | 104 | simprbi | |- ( z Q w -> z ( ( a X. a ) X. ( a X. a ) ) w ) |
| 106 | brxp | |- ( z ( ( a X. a ) X. ( a X. a ) ) w <-> ( z e. ( a X. a ) /\ w e. ( a X. a ) ) ) |
|
| 107 | 106 | simplbi | |- ( z ( ( a X. a ) X. ( a X. a ) ) w -> z e. ( a X. a ) ) |
| 108 | 101 105 107 | 3syl | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z e. ( a X. a ) ) |
| 109 | 96 108 | sselid | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z e. ( _V X. _V ) ) |
| 110 | 22 | adantr | |- ( ( ph /\ w e. ( a X. a ) ) -> a e. On ) |
| 111 | 110 | 3adant3 | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> a e. On ) |
| 112 | xp1st | |- ( z e. ( a X. a ) -> ( 1st ` z ) e. a ) |
|
| 113 | onelon | |- ( ( a e. On /\ ( 1st ` z ) e. a ) -> ( 1st ` z ) e. On ) |
|
| 114 | 112 113 | sylan2 | |- ( ( a e. On /\ z e. ( a X. a ) ) -> ( 1st ` z ) e. On ) |
| 115 | 111 108 114 | syl2anc | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 1st ` z ) e. On ) |
| 116 | eloni | |- ( a e. On -> Ord a ) |
|
| 117 | elxp7 | |- ( w e. ( a X. a ) <-> ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) e. a /\ ( 2nd ` w ) e. a ) ) ) |
|
| 118 | 117 | simprbi | |- ( w e. ( a X. a ) -> ( ( 1st ` w ) e. a /\ ( 2nd ` w ) e. a ) ) |
| 119 | ordunel | |- ( ( Ord a /\ ( 1st ` w ) e. a /\ ( 2nd ` w ) e. a ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. a ) |
|
| 120 | 119 | 3expib | |- ( Ord a -> ( ( ( 1st ` w ) e. a /\ ( 2nd ` w ) e. a ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. a ) ) |
| 121 | 116 118 120 | syl2im | |- ( a e. On -> ( w e. ( a X. a ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. a ) ) |
| 122 | 110 71 121 | sylc | |- ( ( ph /\ w e. ( a X. a ) ) -> ( ( 1st ` w ) u. ( 2nd ` w ) ) e. a ) |
| 123 | 5 122 | eqeltrid | |- ( ( ph /\ w e. ( a X. a ) ) -> M e. a ) |
| 124 | simprr | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> A. m e. a m ~< a ) |
|
| 125 | 4 124 | sylbi | |- ( ph -> A. m e. a m ~< a ) |
| 126 | simprl | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> _om C_ a ) |
|
| 127 | 4 126 | sylbi | |- ( ph -> _om C_ a ) |
| 128 | iscard | |- ( ( card ` a ) = a <-> ( a e. On /\ A. m e. a m ~< a ) ) |
|
| 129 | cardlim | |- ( _om C_ ( card ` a ) <-> Lim ( card ` a ) ) |
|
| 130 | sseq2 | |- ( ( card ` a ) = a -> ( _om C_ ( card ` a ) <-> _om C_ a ) ) |
|
| 131 | limeq | |- ( ( card ` a ) = a -> ( Lim ( card ` a ) <-> Lim a ) ) |
|
| 132 | 130 131 | bibi12d | |- ( ( card ` a ) = a -> ( ( _om C_ ( card ` a ) <-> Lim ( card ` a ) ) <-> ( _om C_ a <-> Lim a ) ) ) |
| 133 | 129 132 | mpbii | |- ( ( card ` a ) = a -> ( _om C_ a <-> Lim a ) ) |
| 134 | 128 133 | sylbir | |- ( ( a e. On /\ A. m e. a m ~< a ) -> ( _om C_ a <-> Lim a ) ) |
| 135 | 134 | biimpa | |- ( ( ( a e. On /\ A. m e. a m ~< a ) /\ _om C_ a ) -> Lim a ) |
| 136 | 22 125 127 135 | syl21anc | |- ( ph -> Lim a ) |
| 137 | 136 | adantr | |- ( ( ph /\ w e. ( a X. a ) ) -> Lim a ) |
| 138 | limsuc | |- ( Lim a -> ( M e. a <-> suc M e. a ) ) |
|
| 139 | 137 138 | syl | |- ( ( ph /\ w e. ( a X. a ) ) -> ( M e. a <-> suc M e. a ) ) |
| 140 | 123 139 | mpbid | |- ( ( ph /\ w e. ( a X. a ) ) -> suc M e. a ) |
| 141 | onelon | |- ( ( a e. On /\ suc M e. a ) -> suc M e. On ) |
|
| 142 | 22 140 141 | syl2an2r | |- ( ( ph /\ w e. ( a X. a ) ) -> suc M e. On ) |
| 143 | 142 | 3adant3 | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> suc M e. On ) |
| 144 | ssun1 | |- ( 1st ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) |
|
| 145 | 144 | a1i | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 1st ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) ) |
| 146 | 104 | simplbi | |- ( z Q w -> z R w ) |
| 147 | df-br | |- ( z R w <-> <. z , w >. e. R ) |
|
| 148 | 2 | eleq2i | |- ( <. z , w >. e. R <-> <. z , w >. e. { <. z , w >. | ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) } ) |
| 149 | opabidw | |- ( <. z , w >. e. { <. z , w >. | ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) } <-> ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) ) |
|
| 150 | 147 148 149 | 3bitri | |- ( z R w <-> ( ( z e. ( On X. On ) /\ w e. ( On X. On ) ) /\ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) ) |
| 151 | 150 | simprbi | |- ( z R w -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) ) |
| 152 | simpl | |- ( ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
|
| 153 | 152 | orim2i | |- ( ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) /\ z L w ) ) -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 154 | 151 153 | syl | |- ( z R w -> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 155 | fvex | |- ( 1st ` z ) e. _V |
|
| 156 | fvex | |- ( 2nd ` z ) e. _V |
|
| 157 | 155 156 | unex | |- ( ( 1st ` z ) u. ( 2nd ` z ) ) e. _V |
| 158 | 157 | elsuc | |- ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc ( ( 1st ` w ) u. ( 2nd ` w ) ) <-> ( ( ( 1st ` z ) u. ( 2nd ` z ) ) e. ( ( 1st ` w ) u. ( 2nd ` w ) ) \/ ( ( 1st ` z ) u. ( 2nd ` z ) ) = ( ( 1st ` w ) u. ( 2nd ` w ) ) ) ) |
| 159 | 154 158 | sylibr | |- ( z R w -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
| 160 | suceq | |- ( M = ( ( 1st ` w ) u. ( 2nd ` w ) ) -> suc M = suc ( ( 1st ` w ) u. ( 2nd ` w ) ) ) |
|
| 161 | 5 160 | ax-mp | |- suc M = suc ( ( 1st ` w ) u. ( 2nd ` w ) ) |
| 162 | 159 161 | eleqtrrdi | |- ( z R w -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) |
| 163 | 101 146 162 | 3syl | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) |
| 164 | ontr2 | |- ( ( ( 1st ` z ) e. On /\ suc M e. On ) -> ( ( ( 1st ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) /\ ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) -> ( 1st ` z ) e. suc M ) ) |
|
| 165 | 164 | imp | |- ( ( ( ( 1st ` z ) e. On /\ suc M e. On ) /\ ( ( 1st ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) /\ ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) ) -> ( 1st ` z ) e. suc M ) |
| 166 | 115 143 145 163 165 | syl22anc | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 1st ` z ) e. suc M ) |
| 167 | xp2nd | |- ( z e. ( a X. a ) -> ( 2nd ` z ) e. a ) |
|
| 168 | onelon | |- ( ( a e. On /\ ( 2nd ` z ) e. a ) -> ( 2nd ` z ) e. On ) |
|
| 169 | 167 168 | sylan2 | |- ( ( a e. On /\ z e. ( a X. a ) ) -> ( 2nd ` z ) e. On ) |
| 170 | 111 108 169 | syl2anc | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 2nd ` z ) e. On ) |
| 171 | ssun2 | |- ( 2nd ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) |
|
| 172 | 171 | a1i | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 2nd ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) ) |
| 173 | ontr2 | |- ( ( ( 2nd ` z ) e. On /\ suc M e. On ) -> ( ( ( 2nd ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) /\ ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) -> ( 2nd ` z ) e. suc M ) ) |
|
| 174 | 173 | imp | |- ( ( ( ( 2nd ` z ) e. On /\ suc M e. On ) /\ ( ( 2nd ` z ) C_ ( ( 1st ` z ) u. ( 2nd ` z ) ) /\ ( ( 1st ` z ) u. ( 2nd ` z ) ) e. suc M ) ) -> ( 2nd ` z ) e. suc M ) |
| 175 | 170 143 172 163 174 | syl22anc | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> ( 2nd ` z ) e. suc M ) |
| 176 | elxp7 | |- ( z e. ( suc M X. suc M ) <-> ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. suc M /\ ( 2nd ` z ) e. suc M ) ) ) |
|
| 177 | 176 | biimpri | |- ( ( z e. ( _V X. _V ) /\ ( ( 1st ` z ) e. suc M /\ ( 2nd ` z ) e. suc M ) ) -> z e. ( suc M X. suc M ) ) |
| 178 | 109 166 175 177 | syl12anc | |- ( ( ph /\ w e. ( a X. a ) /\ z e. ( `' Q " { w } ) ) -> z e. ( suc M X. suc M ) ) |
| 179 | 178 | 3expia | |- ( ( ph /\ w e. ( a X. a ) ) -> ( z e. ( `' Q " { w } ) -> z e. ( suc M X. suc M ) ) ) |
| 180 | 179 | ssrdv | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) C_ ( suc M X. suc M ) ) |
| 181 | ssdomg | |- ( ( suc M X. suc M ) e. _V -> ( ( `' Q " { w } ) C_ ( suc M X. suc M ) -> ( `' Q " { w } ) ~<_ ( suc M X. suc M ) ) ) |
|
| 182 | 95 180 181 | mpsyl | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) ~<_ ( suc M X. suc M ) ) |
| 183 | 127 | adantr | |- ( ( ph /\ w e. ( a X. a ) ) -> _om C_ a ) |
| 184 | nnfi | |- ( suc M e. _om -> suc M e. Fin ) |
|
| 185 | xpfi | |- ( ( suc M e. Fin /\ suc M e. Fin ) -> ( suc M X. suc M ) e. Fin ) |
|
| 186 | 185 | anidms | |- ( suc M e. Fin -> ( suc M X. suc M ) e. Fin ) |
| 187 | isfinite | |- ( ( suc M X. suc M ) e. Fin <-> ( suc M X. suc M ) ~< _om ) |
|
| 188 | 186 187 | sylib | |- ( suc M e. Fin -> ( suc M X. suc M ) ~< _om ) |
| 189 | 184 188 | syl | |- ( suc M e. _om -> ( suc M X. suc M ) ~< _om ) |
| 190 | ssdomg | |- ( a e. _V -> ( _om C_ a -> _om ~<_ a ) ) |
|
| 191 | 190 | elv | |- ( _om C_ a -> _om ~<_ a ) |
| 192 | sdomdomtr | |- ( ( ( suc M X. suc M ) ~< _om /\ _om ~<_ a ) -> ( suc M X. suc M ) ~< a ) |
|
| 193 | 189 191 192 | syl2an | |- ( ( suc M e. _om /\ _om C_ a ) -> ( suc M X. suc M ) ~< a ) |
| 194 | 193 | expcom | |- ( _om C_ a -> ( suc M e. _om -> ( suc M X. suc M ) ~< a ) ) |
| 195 | 183 194 | syl | |- ( ( ph /\ w e. ( a X. a ) ) -> ( suc M e. _om -> ( suc M X. suc M ) ~< a ) ) |
| 196 | breq1 | |- ( m = suc M -> ( m ~< a <-> suc M ~< a ) ) |
|
| 197 | 125 | adantr | |- ( ( ph /\ w e. ( a X. a ) ) -> A. m e. a m ~< a ) |
| 198 | 196 197 140 | rspcdva | |- ( ( ph /\ w e. ( a X. a ) ) -> suc M ~< a ) |
| 199 | omelon | |- _om e. On |
|
| 200 | ontri1 | |- ( ( _om e. On /\ suc M e. On ) -> ( _om C_ suc M <-> -. suc M e. _om ) ) |
|
| 201 | 199 142 200 | sylancr | |- ( ( ph /\ w e. ( a X. a ) ) -> ( _om C_ suc M <-> -. suc M e. _om ) ) |
| 202 | sseq2 | |- ( m = suc M -> ( _om C_ m <-> _om C_ suc M ) ) |
|
| 203 | xpeq12 | |- ( ( m = suc M /\ m = suc M ) -> ( m X. m ) = ( suc M X. suc M ) ) |
|
| 204 | 203 | anidms | |- ( m = suc M -> ( m X. m ) = ( suc M X. suc M ) ) |
| 205 | id | |- ( m = suc M -> m = suc M ) |
|
| 206 | 204 205 | breq12d | |- ( m = suc M -> ( ( m X. m ) ~~ m <-> ( suc M X. suc M ) ~~ suc M ) ) |
| 207 | 202 206 | imbi12d | |- ( m = suc M -> ( ( _om C_ m -> ( m X. m ) ~~ m ) <-> ( _om C_ suc M -> ( suc M X. suc M ) ~~ suc M ) ) ) |
| 208 | simplr | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) |
|
| 209 | 4 208 | sylbi | |- ( ph -> A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) |
| 210 | 209 | adantr | |- ( ( ph /\ w e. ( a X. a ) ) -> A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) |
| 211 | 207 210 140 | rspcdva | |- ( ( ph /\ w e. ( a X. a ) ) -> ( _om C_ suc M -> ( suc M X. suc M ) ~~ suc M ) ) |
| 212 | 201 211 | sylbird | |- ( ( ph /\ w e. ( a X. a ) ) -> ( -. suc M e. _om -> ( suc M X. suc M ) ~~ suc M ) ) |
| 213 | ensdomtr | |- ( ( ( suc M X. suc M ) ~~ suc M /\ suc M ~< a ) -> ( suc M X. suc M ) ~< a ) |
|
| 214 | 213 | expcom | |- ( suc M ~< a -> ( ( suc M X. suc M ) ~~ suc M -> ( suc M X. suc M ) ~< a ) ) |
| 215 | 198 212 214 | sylsyld | |- ( ( ph /\ w e. ( a X. a ) ) -> ( -. suc M e. _om -> ( suc M X. suc M ) ~< a ) ) |
| 216 | 195 215 | pm2.61d | |- ( ( ph /\ w e. ( a X. a ) ) -> ( suc M X. suc M ) ~< a ) |
| 217 | domsdomtr | |- ( ( ( `' Q " { w } ) ~<_ ( suc M X. suc M ) /\ ( suc M X. suc M ) ~< a ) -> ( `' Q " { w } ) ~< a ) |
|
| 218 | 182 216 217 | syl2anc | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' Q " { w } ) ~< a ) |
| 219 | ensdomtr | |- ( ( ( `' J ` w ) ~~ ( `' Q " { w } ) /\ ( `' Q " { w } ) ~< a ) -> ( `' J ` w ) ~< a ) |
|
| 220 | 89 218 219 | syl2anc | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) ~< a ) |
| 221 | ordelon | |- ( ( Ord dom J /\ ( `' J ` w ) e. dom J ) -> ( `' J ` w ) e. On ) |
|
| 222 | 77 80 221 | sylancr | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) e. On ) |
| 223 | onenon | |- ( a e. On -> a e. dom card ) |
|
| 224 | 110 223 | syl | |- ( ( ph /\ w e. ( a X. a ) ) -> a e. dom card ) |
| 225 | cardsdomel | |- ( ( ( `' J ` w ) e. On /\ a e. dom card ) -> ( ( `' J ` w ) ~< a <-> ( `' J ` w ) e. ( card ` a ) ) ) |
|
| 226 | 222 224 225 | syl2anc | |- ( ( ph /\ w e. ( a X. a ) ) -> ( ( `' J ` w ) ~< a <-> ( `' J ` w ) e. ( card ` a ) ) ) |
| 227 | 220 226 | mpbid | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) e. ( card ` a ) ) |
| 228 | eleq2 | |- ( ( card ` a ) = a -> ( ( `' J ` w ) e. ( card ` a ) <-> ( `' J ` w ) e. a ) ) |
|
| 229 | 128 228 | sylbir | |- ( ( a e. On /\ A. m e. a m ~< a ) -> ( ( `' J ` w ) e. ( card ` a ) <-> ( `' J ` w ) e. a ) ) |
| 230 | 22 197 229 | syl2an2r | |- ( ( ph /\ w e. ( a X. a ) ) -> ( ( `' J ` w ) e. ( card ` a ) <-> ( `' J ` w ) e. a ) ) |
| 231 | 227 230 | mpbid | |- ( ( ph /\ w e. ( a X. a ) ) -> ( `' J ` w ) e. a ) |
| 232 | 231 | ralrimiva | |- ( ph -> A. w e. ( a X. a ) ( `' J ` w ) e. a ) |
| 233 | fnfvrnss | |- ( ( `' J Fn ( a X. a ) /\ A. w e. ( a X. a ) ( `' J ` w ) e. a ) -> ran `' J C_ a ) |
|
| 234 | ssdomg | |- ( a e. _V -> ( ran `' J C_ a -> ran `' J ~<_ a ) ) |
|
| 235 | 19 233 234 | mpsyl | |- ( ( `' J Fn ( a X. a ) /\ A. w e. ( a X. a ) ( `' J ` w ) e. a ) -> ran `' J ~<_ a ) |
| 236 | 46 232 235 | syl2anc | |- ( ph -> ran `' J ~<_ a ) |
| 237 | endomtr | |- ( ( ( a X. a ) ~~ ran `' J /\ ran `' J ~<_ a ) -> ( a X. a ) ~<_ a ) |
|
| 238 | 44 236 237 | syl2anc | |- ( ph -> ( a X. a ) ~<_ a ) |
| 239 | 4 238 | sylbir | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> ( a X. a ) ~<_ a ) |
| 240 | df1o2 | |- 1o = { (/) } |
|
| 241 | 1onn | |- 1o e. _om |
|
| 242 | 240 241 | eqeltrri | |- { (/) } e. _om |
| 243 | nnsdom | |- ( { (/) } e. _om -> { (/) } ~< _om ) |
|
| 244 | sdomdom | |- ( { (/) } ~< _om -> { (/) } ~<_ _om ) |
|
| 245 | 242 243 244 | mp2b | |- { (/) } ~<_ _om |
| 246 | domtr | |- ( ( { (/) } ~<_ _om /\ _om ~<_ a ) -> { (/) } ~<_ a ) |
|
| 247 | 245 191 246 | sylancr | |- ( _om C_ a -> { (/) } ~<_ a ) |
| 248 | 0ex | |- (/) e. _V |
|
| 249 | 19 248 | xpsnen | |- ( a X. { (/) } ) ~~ a |
| 250 | 249 | ensymi | |- a ~~ ( a X. { (/) } ) |
| 251 | 19 | xpdom2 | |- ( { (/) } ~<_ a -> ( a X. { (/) } ) ~<_ ( a X. a ) ) |
| 252 | endomtr | |- ( ( a ~~ ( a X. { (/) } ) /\ ( a X. { (/) } ) ~<_ ( a X. a ) ) -> a ~<_ ( a X. a ) ) |
|
| 253 | 250 251 252 | sylancr | |- ( { (/) } ~<_ a -> a ~<_ ( a X. a ) ) |
| 254 | 247 253 | syl | |- ( _om C_ a -> a ~<_ ( a X. a ) ) |
| 255 | 254 | ad2antrl | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> a ~<_ ( a X. a ) ) |
| 256 | sbth | |- ( ( ( a X. a ) ~<_ a /\ a ~<_ ( a X. a ) ) -> ( a X. a ) ~~ a ) |
|
| 257 | 239 255 256 | syl2anc | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ A. m e. a m ~< a ) ) -> ( a X. a ) ~~ a ) |
| 258 | 257 | expr | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ _om C_ a ) -> ( A. m e. a m ~< a -> ( a X. a ) ~~ a ) ) |
| 259 | simplr | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) |
|
| 260 | simpll | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> a e. On ) |
|
| 261 | simprr | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> -. A. m e. a m ~< a ) |
|
| 262 | rexnal | |- ( E. m e. a -. m ~< a <-> -. A. m e. a m ~< a ) |
|
| 263 | onelss | |- ( a e. On -> ( m e. a -> m C_ a ) ) |
|
| 264 | ssdomg | |- ( a e. On -> ( m C_ a -> m ~<_ a ) ) |
|
| 265 | 263 264 | syld | |- ( a e. On -> ( m e. a -> m ~<_ a ) ) |
| 266 | bren2 | |- ( m ~~ a <-> ( m ~<_ a /\ -. m ~< a ) ) |
|
| 267 | 266 | simplbi2 | |- ( m ~<_ a -> ( -. m ~< a -> m ~~ a ) ) |
| 268 | 265 267 | syl6 | |- ( a e. On -> ( m e. a -> ( -. m ~< a -> m ~~ a ) ) ) |
| 269 | 268 | reximdvai | |- ( a e. On -> ( E. m e. a -. m ~< a -> E. m e. a m ~~ a ) ) |
| 270 | 262 269 | biimtrrid | |- ( a e. On -> ( -. A. m e. a m ~< a -> E. m e. a m ~~ a ) ) |
| 271 | 260 261 270 | sylc | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> E. m e. a m ~~ a ) |
| 272 | r19.29 | |- ( ( A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) /\ E. m e. a m ~~ a ) -> E. m e. a ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) |
|
| 273 | 259 271 272 | syl2anc | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> E. m e. a ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) |
| 274 | simprl | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> _om C_ a ) |
|
| 275 | onelon | |- ( ( a e. On /\ m e. a ) -> m e. On ) |
|
| 276 | ensym | |- ( m ~~ a -> a ~~ m ) |
|
| 277 | domentr | |- ( ( _om ~<_ a /\ a ~~ m ) -> _om ~<_ m ) |
|
| 278 | 191 276 277 | syl2an | |- ( ( _om C_ a /\ m ~~ a ) -> _om ~<_ m ) |
| 279 | domnsym | |- ( _om ~<_ m -> -. m ~< _om ) |
|
| 280 | nnsdom | |- ( m e. _om -> m ~< _om ) |
|
| 281 | 279 280 | nsyl | |- ( _om ~<_ m -> -. m e. _om ) |
| 282 | ontri1 | |- ( ( _om e. On /\ m e. On ) -> ( _om C_ m <-> -. m e. _om ) ) |
|
| 283 | 199 282 | mpan | |- ( m e. On -> ( _om C_ m <-> -. m e. _om ) ) |
| 284 | 281 283 | imbitrrid | |- ( m e. On -> ( _om ~<_ m -> _om C_ m ) ) |
| 285 | 275 278 284 | syl2im | |- ( ( a e. On /\ m e. a ) -> ( ( _om C_ a /\ m ~~ a ) -> _om C_ m ) ) |
| 286 | 285 | expd | |- ( ( a e. On /\ m e. a ) -> ( _om C_ a -> ( m ~~ a -> _om C_ m ) ) ) |
| 287 | 286 | impcom | |- ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) -> ( m ~~ a -> _om C_ m ) ) |
| 288 | 287 | imim1d | |- ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) -> ( ( _om C_ m -> ( m X. m ) ~~ m ) -> ( m ~~ a -> ( m X. m ) ~~ m ) ) ) |
| 289 | 288 | imp32 | |- ( ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) /\ ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) -> ( m X. m ) ~~ m ) |
| 290 | entr | |- ( ( ( m X. m ) ~~ m /\ m ~~ a ) -> ( m X. m ) ~~ a ) |
|
| 291 | 290 | ancoms | |- ( ( m ~~ a /\ ( m X. m ) ~~ m ) -> ( m X. m ) ~~ a ) |
| 292 | xpen | |- ( ( a ~~ m /\ a ~~ m ) -> ( a X. a ) ~~ ( m X. m ) ) |
|
| 293 | 292 | anidms | |- ( a ~~ m -> ( a X. a ) ~~ ( m X. m ) ) |
| 294 | entr | |- ( ( ( a X. a ) ~~ ( m X. m ) /\ ( m X. m ) ~~ a ) -> ( a X. a ) ~~ a ) |
|
| 295 | 293 294 | sylan | |- ( ( a ~~ m /\ ( m X. m ) ~~ a ) -> ( a X. a ) ~~ a ) |
| 296 | 276 291 295 | syl2an2r | |- ( ( m ~~ a /\ ( m X. m ) ~~ m ) -> ( a X. a ) ~~ a ) |
| 297 | 296 | ex | |- ( m ~~ a -> ( ( m X. m ) ~~ m -> ( a X. a ) ~~ a ) ) |
| 298 | 297 | ad2antll | |- ( ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) /\ ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) -> ( ( m X. m ) ~~ m -> ( a X. a ) ~~ a ) ) |
| 299 | 289 298 | mpd | |- ( ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) /\ ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) ) -> ( a X. a ) ~~ a ) |
| 300 | 299 | ex | |- ( ( _om C_ a /\ ( a e. On /\ m e. a ) ) -> ( ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) -> ( a X. a ) ~~ a ) ) |
| 301 | 300 | expr | |- ( ( _om C_ a /\ a e. On ) -> ( m e. a -> ( ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) -> ( a X. a ) ~~ a ) ) ) |
| 302 | 301 | rexlimdv | |- ( ( _om C_ a /\ a e. On ) -> ( E. m e. a ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) -> ( a X. a ) ~~ a ) ) |
| 303 | 274 260 302 | syl2anc | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> ( E. m e. a ( ( _om C_ m -> ( m X. m ) ~~ m ) /\ m ~~ a ) -> ( a X. a ) ~~ a ) ) |
| 304 | 273 303 | mpd | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ ( _om C_ a /\ -. A. m e. a m ~< a ) ) -> ( a X. a ) ~~ a ) |
| 305 | 304 | expr | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ _om C_ a ) -> ( -. A. m e. a m ~< a -> ( a X. a ) ~~ a ) ) |
| 306 | 258 305 | pm2.61d | |- ( ( ( a e. On /\ A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) ) /\ _om C_ a ) -> ( a X. a ) ~~ a ) |
| 307 | 306 | exp31 | |- ( a e. On -> ( A. m e. a ( _om C_ m -> ( m X. m ) ~~ m ) -> ( _om C_ a -> ( a X. a ) ~~ a ) ) ) |
| 308 | 12 18 307 | tfis3 | |- ( A e. On -> ( _om C_ A -> ( A X. A ) ~~ A ) ) |
| 309 | 308 | imp | |- ( ( A e. On /\ _om C_ A ) -> ( A X. A ) ~~ A ) |