This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfis3.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| tfis3.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | ||
| tfis3.3 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) | ||
| Assertion | tfis3 | ⊢ ( 𝐴 ∈ On → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis3.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | tfis3.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | tfis3.3 | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝜓 → 𝜑 ) ) | |
| 4 | 1 3 | tfis2 | ⊢ ( 𝑥 ∈ On → 𝜑 ) |
| 5 | 2 4 | vtoclga | ⊢ ( 𝐴 ∈ On → 𝜒 ) |