This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Converse law for isomorphism. Proposition 6.30(2) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isocnv | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 ) |
| 3 | f1ocnvfv2 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) = 𝑧 ) | |
| 4 | 3 | adantrr | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) = 𝑧 ) |
| 5 | f1ocnvfv2 | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) = 𝑤 ) | |
| 6 | 5 | adantrl | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) = 𝑤 ) |
| 7 | 4 6 | breq12d | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ↔ 𝑧 𝑆 𝑤 ) ) |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ↔ 𝑧 𝑆 𝑤 ) ) |
| 9 | f1of | ⊢ ( ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐻 : 𝐵 ⟶ 𝐴 ) | |
| 10 | 1 9 | syl | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐻 : 𝐵 ⟶ 𝐴 ) |
| 11 | ffvelcdm | ⊢ ( ( ◡ 𝐻 : 𝐵 ⟶ 𝐴 ∧ 𝑧 ∈ 𝐵 ) → ( ◡ 𝐻 ‘ 𝑧 ) ∈ 𝐴 ) | |
| 12 | ffvelcdm | ⊢ ( ( ◡ 𝐻 : 𝐵 ⟶ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ( ◡ 𝐻 ‘ 𝑤 ) ∈ 𝐴 ) | |
| 13 | 11 12 | anim12dan | ⊢ ( ( ◡ 𝐻 : 𝐵 ⟶ 𝐴 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ◡ 𝐻 ‘ 𝑧 ) ∈ 𝐴 ∧ ( ◡ 𝐻 ‘ 𝑤 ) ∈ 𝐴 ) ) |
| 14 | breq1 | ⊢ ( 𝑥 = ( ◡ 𝐻 ‘ 𝑧 ) → ( 𝑥 𝑅 𝑦 ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 𝑦 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑥 = ( ◡ 𝐻 ‘ 𝑧 ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) ) | |
| 16 | 15 | breq1d | ⊢ ( 𝑥 = ( ◡ 𝐻 ‘ 𝑧 ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 17 | 14 16 | bibi12d | ⊢ ( 𝑥 = ( ◡ 𝐻 ‘ 𝑧 ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 𝑦 ↔ ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 18 | bicom | ⊢ ( ( ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 𝑦 ↔ ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 𝑦 ) ) | |
| 19 | 17 18 | bitrdi | ⊢ ( 𝑥 = ( ◡ 𝐻 ‘ 𝑧 ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 𝑦 ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑦 = ( ◡ 𝐻 ‘ 𝑤 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ) | |
| 21 | 20 | breq2d | ⊢ ( 𝑦 = ( ◡ 𝐻 ‘ 𝑤 ) → ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ) ) |
| 22 | breq2 | ⊢ ( 𝑦 = ( ◡ 𝐻 ‘ 𝑤 ) → ( ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 𝑦 ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) | |
| 23 | 21 22 | bibi12d | ⊢ ( 𝑦 = ( ◡ 𝐻 ‘ 𝑤 ) → ( ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 𝑦 ) ↔ ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) ) |
| 24 | 19 23 | rspc2va | ⊢ ( ( ( ( ◡ 𝐻 ‘ 𝑧 ) ∈ 𝐴 ∧ ( ◡ 𝐻 ‘ 𝑤 ) ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) |
| 25 | 13 24 | sylan | ⊢ ( ( ( ◡ 𝐻 : 𝐵 ⟶ 𝐴 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) |
| 26 | 25 | an32s | ⊢ ( ( ( ◡ 𝐻 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) |
| 27 | 10 26 | sylanl1 | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑧 ) ) 𝑆 ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑤 ) ) ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) |
| 28 | 8 27 | bitr3d | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 𝑆 𝑤 ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) |
| 29 | 28 | ralrimivva | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) |
| 30 | 2 29 | jca | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) → ( ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) ) |
| 31 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 32 | df-isom | ⊢ ( ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ↔ ( ◡ 𝐻 : 𝐵 –1-1-onto→ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 𝑆 𝑤 ↔ ( ◡ 𝐻 ‘ 𝑧 ) 𝑅 ( ◡ 𝐻 ‘ 𝑤 ) ) ) ) | |
| 33 | 30 31 32 | 3imtr4i | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ◡ 𝐻 Isom 𝑆 , 𝑅 ( 𝐵 , 𝐴 ) ) |