This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ( R1A ) for A a strongly inaccessible cardinal is equipotent to A . (Contributed by Mario Carneiro, 6-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inar1 | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) | |
| 2 | winaon | ⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ On ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ On ) |
| 4 | winalim | ⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) | |
| 5 | 1 4 | syl | ⊢ ( 𝐴 ∈ Inacc → Lim 𝐴 ) |
| 6 | r1lim | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ) |
| 8 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) | |
| 9 | 3 8 | sylan | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
| 10 | eleq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐴 ↔ ∅ ∈ 𝐴 ) ) | |
| 11 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 12 | 11 | breq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ↔ ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ) ) |
| 13 | 10 12 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ↔ ( ∅ ∈ 𝐴 → ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ) ) ) |
| 14 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 16 | 15 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 17 | 14 16 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) |
| 18 | eleq1 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴 ) ) | |
| 19 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 20 | 19 | breq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ↔ ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) |
| 21 | 18 20 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ↔ ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) ) |
| 22 | ne0i | ⊢ ( ∅ ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
| 23 | 0sdomg | ⊢ ( 𝐴 ∈ On → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 24 | 22 23 | imbitrrid | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ∅ ≺ 𝐴 ) ) |
| 25 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 26 | 25 | breq1i | ⊢ ( ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ↔ ∅ ≺ 𝐴 ) |
| 27 | 24 26 | imbitrrdi | ⊢ ( 𝐴 ∈ On → ( ∅ ∈ 𝐴 → ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ) ) |
| 28 | 1 2 27 | 3syl | ⊢ ( 𝐴 ∈ Inacc → ( ∅ ∈ 𝐴 → ( 𝑅1 ‘ ∅ ) ≺ 𝐴 ) ) |
| 29 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 30 | ordtr | ⊢ ( Ord 𝐴 → Tr 𝐴 ) | |
| 31 | 29 30 | syl | ⊢ ( 𝐴 ∈ On → Tr 𝐴 ) |
| 32 | trsuc | ⊢ ( ( Tr 𝐴 ∧ suc 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 33 | 32 | ex | ⊢ ( Tr 𝐴 → ( suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 34 | 3 31 33 | 3syl | ⊢ ( 𝐴 ∈ Inacc → ( suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ Inacc ) → ( suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴 ) ) |
| 36 | r1suc | ⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) | |
| 37 | fvex | ⊢ ( 𝑅1 ‘ 𝑦 ) ∈ V | |
| 38 | 37 | cardid | ⊢ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≈ ( 𝑅1 ‘ 𝑦 ) |
| 39 | 38 | ensymi | ⊢ ( 𝑅1 ‘ 𝑦 ) ≈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 40 | pwen | ⊢ ( ( 𝑅1 ‘ 𝑦 ) ≈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝒫 ( 𝑅1 ‘ 𝑦 ) ≈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 41 | 39 40 | ax-mp | ⊢ 𝒫 ( 𝑅1 ‘ 𝑦 ) ≈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 42 | 36 41 | eqbrtrdi | ⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) ≈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 43 | winacard | ⊢ ( 𝐴 ∈ Inaccw → ( card ‘ 𝐴 ) = 𝐴 ) | |
| 44 | 43 | eleq2d | ⊢ ( 𝐴 ∈ Inaccw → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 45 | cardsdom | ⊢ ( ( ( 𝑅1 ‘ 𝑦 ) ∈ V ∧ 𝐴 ∈ On ) → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) | |
| 46 | 37 2 45 | sylancr | ⊢ ( 𝐴 ∈ Inaccw → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 47 | 44 46 | bitr3d | ⊢ ( 𝐴 ∈ Inaccw → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 48 | 1 47 | syl | ⊢ ( 𝐴 ∈ Inacc → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 49 | elina | ⊢ ( 𝐴 ∈ Inacc ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝒫 𝑧 ≺ 𝐴 ) ) | |
| 50 | 49 | simp3bi | ⊢ ( 𝐴 ∈ Inacc → ∀ 𝑧 ∈ 𝐴 𝒫 𝑧 ≺ 𝐴 ) |
| 51 | pweq | ⊢ ( 𝑧 = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝒫 𝑧 = 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 52 | 51 | breq1d | ⊢ ( 𝑧 = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝒫 𝑧 ≺ 𝐴 ↔ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) ) |
| 53 | 52 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝐴 𝒫 𝑧 ≺ 𝐴 → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) ) |
| 54 | 50 53 | syl | ⊢ ( 𝐴 ∈ Inacc → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) ) |
| 55 | 48 54 | sylbird | ⊢ ( 𝐴 ∈ Inacc → ( ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) ) |
| 56 | 55 | imp | ⊢ ( ( 𝐴 ∈ Inacc ∧ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) |
| 57 | ensdomtr | ⊢ ( ( ( 𝑅1 ‘ suc 𝑦 ) ≈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≺ 𝐴 ) → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) | |
| 58 | 42 56 57 | syl2an | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝐴 ∈ Inacc ∧ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) |
| 59 | 58 | expr | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ Inacc ) → ( ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) |
| 60 | 35 59 | imim12d | ⊢ ( ( 𝑦 ∈ On ∧ 𝐴 ∈ Inacc ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) ) |
| 61 | 60 | ex | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ Inacc → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( suc 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ suc 𝑦 ) ≺ 𝐴 ) ) ) ) |
| 62 | vex | ⊢ 𝑥 ∈ V | |
| 63 | r1lim | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ) | |
| 64 | 62 63 | mpan | ⊢ ( Lim 𝑥 → ( 𝑅1 ‘ 𝑥 ) = ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ) |
| 65 | nfcv | ⊢ Ⅎ 𝑦 𝑧 | |
| 66 | nfcv | ⊢ Ⅎ 𝑦 ( 𝑅1 ‘ 𝑧 ) | |
| 67 | nfcv | ⊢ Ⅎ 𝑦 ≼ | |
| 68 | nfiu1 | ⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) | |
| 69 | 66 67 68 | nfbr | ⊢ Ⅎ 𝑦 ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 70 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑅1 ‘ 𝑦 ) = ( 𝑅1 ‘ 𝑧 ) ) | |
| 71 | 70 | breq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑅1 ‘ 𝑦 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ↔ ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 72 | fvex | ⊢ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ V | |
| 73 | 62 72 | iunex | ⊢ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ V |
| 74 | ssiun2 | ⊢ ( 𝑦 ∈ 𝑥 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 75 | ssdomg | ⊢ ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ V → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) | |
| 76 | 73 74 75 | mpsyl | ⊢ ( 𝑦 ∈ 𝑥 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 77 | endomtr | ⊢ ( ( ( 𝑅1 ‘ 𝑦 ) ≈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∧ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑅1 ‘ 𝑦 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 78 | 39 76 77 | sylancr | ⊢ ( 𝑦 ∈ 𝑥 → ( 𝑅1 ‘ 𝑦 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 79 | 65 69 71 78 | vtoclgaf | ⊢ ( 𝑧 ∈ 𝑥 → ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 80 | 79 | rgen | ⊢ ∀ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) |
| 81 | iundom | ⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) | |
| 82 | 62 80 81 | mp2an | ⊢ ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 83 | 62 73 | unex | ⊢ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ V |
| 84 | ssun2 | ⊢ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 85 | ssdomg | ⊢ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ V → ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) | |
| 86 | 83 84 85 | mp2 | ⊢ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 87 | 62 | xpdom2 | ⊢ ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 88 | 86 87 | ax-mp | ⊢ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 89 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 90 | ssdomg | ⊢ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ V → ( 𝑥 ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → 𝑥 ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) | |
| 91 | 83 89 90 | mp2 | ⊢ 𝑥 ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 92 | 83 | xpdom1 | ⊢ ( 𝑥 ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 93 | 91 92 | ax-mp | ⊢ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 94 | domtr | ⊢ ( ( ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ∧ ( 𝑥 × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) → ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) | |
| 95 | 88 93 94 | mp2an | ⊢ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 96 | limomss | ⊢ ( Lim 𝑥 → ω ⊆ 𝑥 ) | |
| 97 | 96 89 | sstrdi | ⊢ ( Lim 𝑥 → ω ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 98 | ssdomg | ⊢ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ V → ( ω ⊆ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ω ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) | |
| 99 | 83 97 98 | mpsyl | ⊢ ( Lim 𝑥 → ω ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 100 | infxpidm | ⊢ ( ω ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≈ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) | |
| 101 | 99 100 | syl | ⊢ ( Lim 𝑥 → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≈ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 102 | domentr | ⊢ ( ( ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ∧ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) × ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ≈ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) → ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) | |
| 103 | 95 101 102 | sylancr | ⊢ ( Lim 𝑥 → ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 104 | domtr | ⊢ ( ( ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∧ ( 𝑥 × ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) → ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) | |
| 105 | 82 103 104 | sylancr | ⊢ ( Lim 𝑥 → ∪ 𝑧 ∈ 𝑥 ( 𝑅1 ‘ 𝑧 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 106 | 64 105 | eqbrtrd | ⊢ ( Lim 𝑥 → ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 107 | 106 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 108 | eleq1a | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 = 𝑥 → 𝐴 ∈ 𝐴 ) ) | |
| 109 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
| 110 | 3 29 109 | 3syl | ⊢ ( 𝐴 ∈ Inacc → ¬ 𝐴 ∈ 𝐴 ) |
| 111 | 108 110 | nsyli | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∈ Inacc → ¬ 𝐴 = 𝑥 ) ) |
| 112 | 111 | imp | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Inacc ) → ¬ 𝐴 = 𝑥 ) |
| 113 | 112 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ¬ 𝐴 = 𝑥 ) |
| 114 | simpll | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 115 | limord | ⊢ ( Lim 𝑥 → Ord 𝑥 ) | |
| 116 | 62 | elon | ⊢ ( 𝑥 ∈ On ↔ Ord 𝑥 ) |
| 117 | 115 116 | sylibr | ⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 118 | 117 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → 𝑥 ∈ On ) |
| 119 | cardf | ⊢ card : V ⟶ On | |
| 120 | r1fnon | ⊢ 𝑅1 Fn On | |
| 121 | dffn2 | ⊢ ( 𝑅1 Fn On ↔ 𝑅1 : On ⟶ V ) | |
| 122 | 120 121 | mpbi | ⊢ 𝑅1 : On ⟶ V |
| 123 | fco | ⊢ ( ( card : V ⟶ On ∧ 𝑅1 : On ⟶ V ) → ( card ∘ 𝑅1 ) : On ⟶ On ) | |
| 124 | 119 122 123 | mp2an | ⊢ ( card ∘ 𝑅1 ) : On ⟶ On |
| 125 | onss | ⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) | |
| 126 | fssres | ⊢ ( ( ( card ∘ 𝑅1 ) : On ⟶ On ∧ 𝑥 ⊆ On ) → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ On ) | |
| 127 | 124 125 126 | sylancr | ⊢ ( 𝑥 ∈ On → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ On ) |
| 128 | ffn | ⊢ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ On → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) Fn 𝑥 ) | |
| 129 | 118 127 128 | 3syl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) Fn 𝑥 ) |
| 130 | 3 | ad2antlr | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → 𝐴 ∈ On ) |
| 131 | simpr | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) | |
| 132 | simplll | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → 𝑥 ∈ 𝐴 ) | |
| 133 | ontr1 | ⊢ ( 𝐴 ∈ On → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) ) | |
| 134 | 133 | imp | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
| 135 | 130 131 132 134 | syl12anc | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐴 ) |
| 136 | 37 130 45 | sylancr | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) |
| 137 | 1 43 | syl | ⊢ ( 𝐴 ∈ Inacc → ( card ‘ 𝐴 ) = 𝐴 ) |
| 138 | 137 | ad2antlr | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( card ‘ 𝐴 ) = 𝐴 ) |
| 139 | 138 | eleq2d | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ ( card ‘ 𝐴 ) ↔ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 140 | 136 139 | bitr3d | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ↔ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 141 | 140 | biimpd | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 142 | 135 141 | embantd | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 143 | 117 | ad2antlr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) → 𝑥 ∈ On ) |
| 144 | fvres | ⊢ ( 𝑦 ∈ 𝑥 → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ) | |
| 145 | 144 | adantl | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) ) |
| 146 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 147 | fvco3 | ⊢ ( ( 𝑅1 : On ⟶ V ∧ 𝑦 ∈ On ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 148 | 122 146 147 | sylancr | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( card ∘ 𝑅1 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 149 | 145 148 | eqtrd | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 150 | 143 149 | sylan | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) = ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 151 | 150 | eleq1d | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ↔ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 ) ) |
| 152 | 142 151 | sylibrd | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 153 | 152 | ralimdva | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) |
| 154 | 153 | impr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ∀ 𝑦 ∈ 𝑥 ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) |
| 155 | ffnfv | ⊢ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ↔ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ∈ 𝐴 ) ) | |
| 156 | 129 154 155 | sylanbrc | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) |
| 157 | eleq2 | ⊢ ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) | |
| 158 | 157 | biimpa | ⊢ ( ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 159 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ↔ ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 160 | cardon | ⊢ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On | |
| 161 | 160 | onelssi | ⊢ ( 𝑧 ∈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝑧 ⊆ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 162 | 149 | sseq2d | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ↔ 𝑧 ⊆ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 163 | 161 162 | imbitrrid | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑧 ∈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 164 | 163 | reximdva | ⊢ ( 𝑥 ∈ On → ( ∃ 𝑦 ∈ 𝑥 𝑧 ∈ ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 165 | 159 164 | biimtrid | ⊢ ( 𝑥 ∈ On → ( 𝑧 ∈ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 166 | 158 165 | syl5 | ⊢ ( 𝑥 ∈ On → ( ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∧ 𝑧 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 167 | 166 | expdimp | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑧 ∈ 𝐴 → ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 168 | 167 | ralrimiv | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) |
| 169 | 168 | ex | ⊢ ( 𝑥 ∈ On → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 170 | 118 169 | syl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 171 | ffun | ⊢ ( ( card ∘ 𝑅1 ) : On ⟶ On → Fun ( card ∘ 𝑅1 ) ) | |
| 172 | 124 171 | ax-mp | ⊢ Fun ( card ∘ 𝑅1 ) |
| 173 | resfunexg | ⊢ ( ( Fun ( card ∘ 𝑅1 ) ∧ 𝑥 ∈ V ) → ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ∈ V ) | |
| 174 | 172 62 173 | mp2an | ⊢ ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ∈ V |
| 175 | feq1 | ⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( 𝑤 : 𝑥 ⟶ 𝐴 ↔ ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ) ) | |
| 176 | fveq1 | ⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( 𝑤 ‘ 𝑦 ) = ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) | |
| 177 | 176 | sseq2d | ⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ↔ 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 178 | 177 | rexbidv | ⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 179 | 178 | ralbidv | ⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) |
| 180 | 175 179 | anbi12d | ⊢ ( 𝑤 = ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) → ( ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) ↔ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) ) ) |
| 181 | 174 180 | spcev | ⊢ ( ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( ( ( card ∘ 𝑅1 ) ↾ 𝑥 ) ‘ 𝑦 ) ) → ∃ 𝑤 ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) ) |
| 182 | 156 170 181 | syl6an | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ∃ 𝑤 ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) ) ) |
| 183 | 3 | ad2antrl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → 𝐴 ∈ On ) |
| 184 | cfflb | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( ∃ 𝑤 ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) ) | |
| 185 | 183 118 184 | syl2anc | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ∃ 𝑤 ( 𝑤 : 𝑥 ⟶ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ 𝑥 𝑧 ⊆ ( 𝑤 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 186 | 182 185 | syld | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ 𝑥 ) ) |
| 187 | 49 | simp2bi | ⊢ ( 𝐴 ∈ Inacc → ( cf ‘ 𝐴 ) = 𝐴 ) |
| 188 | 187 | sseq1d | ⊢ ( 𝐴 ∈ Inacc → ( ( cf ‘ 𝐴 ) ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) |
| 189 | 188 | ad2antrl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( cf ‘ 𝐴 ) ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) |
| 190 | 186 189 | sylibd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → 𝐴 ⊆ 𝑥 ) ) |
| 191 | ontri1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 192 | 183 118 191 | syl2anc | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) |
| 193 | 190 192 | sylibd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) → ¬ 𝑥 ∈ 𝐴 ) ) |
| 194 | 114 193 | mt2d | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ¬ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 195 | iunon | ⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) | |
| 196 | 62 195 | mpan | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 197 | 160 | a1i | ⊢ ( 𝑦 ∈ 𝑥 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 198 | 196 197 | mprg | ⊢ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On |
| 199 | eqcom | ⊢ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ↔ 𝐴 = ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) | |
| 200 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 201 | eloni | ⊢ ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On → Ord ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 202 | ordequn | ⊢ ( ( Ord 𝑥 ∧ Ord ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝐴 = ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) | |
| 203 | 200 201 202 | syl2an | ⊢ ( ( 𝑥 ∈ On ∧ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) → ( 𝐴 = ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 204 | 199 203 | biimtrid | ⊢ ( ( 𝑥 ∈ On ∧ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 → ( 𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 205 | 118 198 204 | sylancl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 → ( 𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) ) |
| 206 | 113 194 205 | mtord | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ¬ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ) |
| 207 | onelss | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) | |
| 208 | 183 114 207 | sylc | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → 𝑥 ⊆ 𝐴 ) |
| 209 | onelss | ⊢ ( 𝐴 ∈ On → ( ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ 𝐴 → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) ) | |
| 210 | 130 142 209 | sylsyld | ⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) ) |
| 211 | 210 | ralimdva | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ 𝐴 ∈ Inacc ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) ) |
| 212 | 211 | impr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) |
| 213 | iunss | ⊢ ( ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ↔ ∀ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) | |
| 214 | 212 213 | sylibr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ⊆ 𝐴 ) |
| 215 | 208 214 | unssd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ⊆ 𝐴 ) |
| 216 | id | ⊢ ( 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) → 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) ) | |
| 217 | iuneq1 | ⊢ ( 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) → ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) = ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 218 | 216 217 | uneq12d | ⊢ ( 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = ( if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∪ ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 219 | 218 | eleq1d | ⊢ ( 𝑥 = if ( 𝑥 ∈ On , 𝑥 , ∅ ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ↔ ( if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∪ ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ) ) |
| 220 | 0elon | ⊢ ∅ ∈ On | |
| 221 | 220 | elimel | ⊢ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∈ On |
| 222 | 221 | elexi | ⊢ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∈ V |
| 223 | iunon | ⊢ ( ( if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∈ V ∧ ∀ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) → ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) | |
| 224 | 222 223 | mpan | ⊢ ( ∀ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On → ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 225 | 160 | a1i | ⊢ ( 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) → ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On ) |
| 226 | 224 225 | mprg | ⊢ ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ∈ On |
| 227 | 221 226 | onun2i | ⊢ ( if ( 𝑥 ∈ On , 𝑥 , ∅ ) ∪ ∪ 𝑦 ∈ if ( 𝑥 ∈ On , 𝑥 , ∅ ) ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On |
| 228 | 219 227 | dedth | ⊢ ( 𝑥 ∈ On → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ) |
| 229 | 117 228 | syl | ⊢ ( Lim 𝑥 → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ) |
| 230 | 229 | adantl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ) |
| 231 | 3 | adantr | ⊢ ( ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) → 𝐴 ∈ On ) |
| 232 | onsseleq | ⊢ ( ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ⊆ 𝐴 ↔ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ∨ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ) ) ) | |
| 233 | 230 231 232 | syl2an | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ⊆ 𝐴 ↔ ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ∨ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ) ) ) |
| 234 | 215 233 | mpbid | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ∨ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ) ) |
| 235 | 234 | orcomd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 ∨ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ) ) |
| 236 | 235 | ord | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ¬ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) = 𝐴 → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ) ) |
| 237 | 206 236 | mpd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 ) |
| 238 | 137 | ad2antrl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( card ‘ 𝐴 ) = 𝐴 ) |
| 239 | iscard | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑧 ∈ 𝐴 𝑧 ≺ 𝐴 ) ) | |
| 240 | 239 | simprbi | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ∀ 𝑧 ∈ 𝐴 𝑧 ≺ 𝐴 ) |
| 241 | breq1 | ⊢ ( 𝑧 = ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) → ( 𝑧 ≺ 𝐴 ↔ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) ) | |
| 242 | 241 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝐴 𝑧 ≺ 𝐴 → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) ) |
| 243 | 238 240 242 | 3syl | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∈ 𝐴 → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) ) |
| 244 | 237 243 | mpd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) |
| 245 | domsdomtr | ⊢ ( ( ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∪ ∪ 𝑦 ∈ 𝑥 ( card ‘ ( 𝑅1 ‘ 𝑦 ) ) ) ≺ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) | |
| 246 | 107 244 245 | syl2anc | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ Lim 𝑥 ) ∧ ( 𝐴 ∈ Inacc ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) ) ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) |
| 247 | 246 | exp43 | ⊢ ( 𝑥 ∈ 𝐴 → ( Lim 𝑥 → ( 𝐴 ∈ Inacc → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ) ) ) |
| 248 | 247 | com4l | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ Inacc → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ 𝐴 → ( 𝑅1 ‘ 𝑦 ) ≺ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ) ) ) |
| 249 | 13 17 21 28 61 248 | tfinds2 | ⊢ ( 𝑥 ∈ On → ( 𝐴 ∈ Inacc → ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ) ) |
| 250 | 249 | impd | ⊢ ( 𝑥 ∈ On → ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) ) |
| 251 | 9 250 | mpcom | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 ) |
| 252 | sdomdom | ⊢ ( ( 𝑅1 ‘ 𝑥 ) ≺ 𝐴 → ( 𝑅1 ‘ 𝑥 ) ≼ 𝐴 ) | |
| 253 | 251 252 | syl | ⊢ ( ( 𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ 𝑥 ) ≼ 𝐴 ) |
| 254 | 253 | ralrimiva | ⊢ ( 𝐴 ∈ Inacc → ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ≼ 𝐴 ) |
| 255 | iundom | ⊢ ( ( 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ≼ 𝐴 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝐴 × 𝐴 ) ) | |
| 256 | 3 254 255 | syl2anc | ⊢ ( 𝐴 ∈ Inacc → ∪ 𝑥 ∈ 𝐴 ( 𝑅1 ‘ 𝑥 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 257 | 7 256 | eqbrtrd | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 258 | winainf | ⊢ ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 ) | |
| 259 | 1 258 | syl | ⊢ ( 𝐴 ∈ Inacc → ω ⊆ 𝐴 ) |
| 260 | infxpen | ⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) | |
| 261 | 3 259 260 | syl2anc | ⊢ ( 𝐴 ∈ Inacc → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 262 | domentr | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ≼ 𝐴 ) | |
| 263 | 257 261 262 | syl2anc | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≼ 𝐴 ) |
| 264 | fvex | ⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V | |
| 265 | 122 | fdmi | ⊢ dom 𝑅1 = On |
| 266 | 2 265 | eleqtrrdi | ⊢ ( 𝐴 ∈ Inaccw → 𝐴 ∈ dom 𝑅1 ) |
| 267 | onssr1 | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) | |
| 268 | 1 266 267 | 3syl | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| 269 | ssdomg | ⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ V → ( 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) → 𝐴 ≼ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 270 | 264 268 269 | mpsyl | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ≼ ( 𝑅1 ‘ 𝐴 ) ) |
| 271 | sbth | ⊢ ( ( ( 𝑅1 ‘ 𝐴 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝑅1 ‘ 𝐴 ) ) → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) | |
| 272 | 263 270 271 | syl2anc | ⊢ ( 𝐴 ∈ Inacc → ( 𝑅1 ‘ 𝐴 ) ≈ 𝐴 ) |