This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last three are the basis and the induction hypotheses (for successor and limit ordinals respectively). Theorem Schema 4 of Suppes p. 197. The wff ta is an auxiliary antecedent to help shorten proofs using this theorem. (Contributed by NM, 4-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfinds2.1 | ⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) | |
| tfinds2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| tfinds2.3 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | ||
| tfinds2.4 | ⊢ ( 𝜏 → 𝜓 ) | ||
| tfinds2.5 | ⊢ ( 𝑦 ∈ On → ( 𝜏 → ( 𝜒 → 𝜃 ) ) ) | ||
| tfinds2.6 | ⊢ ( Lim 𝑥 → ( 𝜏 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) | ||
| Assertion | tfinds2 | ⊢ ( 𝑥 ∈ On → ( 𝜏 → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfinds2.1 | ⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | tfinds2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | tfinds2.3 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | tfinds2.4 | ⊢ ( 𝜏 → 𝜓 ) | |
| 5 | tfinds2.5 | ⊢ ( 𝑦 ∈ On → ( 𝜏 → ( 𝜒 → 𝜃 ) ) ) | |
| 6 | tfinds2.6 | ⊢ ( Lim 𝑥 → ( 𝜏 → ( ∀ 𝑦 ∈ 𝑥 𝜒 → 𝜑 ) ) ) | |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | 1 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜓 ) ) ) |
| 9 | 7 8 | sbcie | ⊢ ( [ ∅ / 𝑥 ] ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜓 ) ) |
| 10 | 4 9 | mpbir | ⊢ [ ∅ / 𝑥 ] ( 𝜏 → 𝜑 ) |
| 11 | 5 | a2d | ⊢ ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) |
| 12 | 11 | sbcth | ⊢ ( 𝑥 ∈ V → [ 𝑥 / 𝑦 ] ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ) |
| 13 | 12 | elv | ⊢ [ 𝑥 / 𝑦 ] ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) |
| 14 | sbcimg | ⊢ ( 𝑥 ∈ V → ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ↔ ( [ 𝑥 / 𝑦 ] 𝑦 ∈ On → [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ) ) | |
| 15 | 14 | elv | ⊢ ( [ 𝑥 / 𝑦 ] ( 𝑦 ∈ On → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ↔ ( [ 𝑥 / 𝑦 ] 𝑦 ∈ On → [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) ) |
| 16 | 13 15 | mpbi | ⊢ ( [ 𝑥 / 𝑦 ] 𝑦 ∈ On → [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) |
| 17 | sbcel1v | ⊢ ( [ 𝑥 / 𝑦 ] 𝑦 ∈ On ↔ 𝑥 ∈ On ) | |
| 18 | sbcimg | ⊢ ( 𝑥 ∈ V → ( [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ↔ ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜒 ) → [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ) ) ) | |
| 19 | 18 | elv | ⊢ ( [ 𝑥 / 𝑦 ] ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ↔ ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜒 ) → [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ) ) |
| 20 | 16 17 19 | 3imtr3i | ⊢ ( 𝑥 ∈ On → ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜒 ) → [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ) ) |
| 21 | vex | ⊢ 𝑥 ∈ V | |
| 22 | 2 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( 𝜒 ↔ 𝜑 ) ) |
| 23 | 22 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝜒 ↔ 𝜑 ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝜏 → 𝜒 ) ↔ ( 𝜏 → 𝜑 ) ) ) |
| 25 | 21 24 | sbcie | ⊢ ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜒 ) ↔ ( 𝜏 → 𝜑 ) ) |
| 26 | vex | ⊢ 𝑦 ∈ V | |
| 27 | 26 | sucex | ⊢ suc 𝑦 ∈ V |
| 28 | 3 | imbi2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜃 ) ) ) |
| 29 | 27 28 | sbcie | ⊢ ( [ suc 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜃 ) ) |
| 30 | 29 | sbcbii | ⊢ ( [ 𝑥 / 𝑦 ] [ suc 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ↔ [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ) |
| 31 | suceq | ⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) | |
| 32 | 31 | sbcco2 | ⊢ ( [ 𝑥 / 𝑦 ] [ suc 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ↔ [ suc 𝑥 / 𝑥 ] ( 𝜏 → 𝜑 ) ) |
| 33 | 30 32 | bitr3i | ⊢ ( [ 𝑥 / 𝑦 ] ( 𝜏 → 𝜃 ) ↔ [ suc 𝑥 / 𝑥 ] ( 𝜏 → 𝜑 ) ) |
| 34 | 20 25 33 | 3imtr3g | ⊢ ( 𝑥 ∈ On → ( ( 𝜏 → 𝜑 ) → [ suc 𝑥 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) |
| 35 | 2 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜒 ) ) ) |
| 36 | 35 | sbralie | ⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝜏 → 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ) |
| 37 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ) | |
| 38 | 36 37 | bitr2i | ⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝜏 → 𝜑 ) ) |
| 39 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) ↔ ( 𝜏 → ∀ 𝑦 ∈ 𝑥 𝜒 ) ) | |
| 40 | 6 | a2d | ⊢ ( Lim 𝑥 → ( ( 𝜏 → ∀ 𝑦 ∈ 𝑥 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) |
| 41 | 39 40 | biimtrid | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) |
| 42 | 41 | sbcth | ⊢ ( 𝑦 ∈ V → [ 𝑦 / 𝑥 ] ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ) |
| 43 | 42 | elv | ⊢ [ 𝑦 / 𝑥 ] ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) |
| 44 | sbcimg | ⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ↔ ( [ 𝑦 / 𝑥 ] Lim 𝑥 → [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ) ) | |
| 45 | 44 | elv | ⊢ ( [ 𝑦 / 𝑥 ] ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ↔ ( [ 𝑦 / 𝑥 ] Lim 𝑥 → [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) ) |
| 46 | 43 45 | mpbi | ⊢ ( [ 𝑦 / 𝑥 ] Lim 𝑥 → [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ) |
| 47 | limeq | ⊢ ( 𝑥 = 𝑦 → ( Lim 𝑥 ↔ Lim 𝑦 ) ) | |
| 48 | 26 47 | sbcie | ⊢ ( [ 𝑦 / 𝑥 ] Lim 𝑥 ↔ Lim 𝑦 ) |
| 49 | sbcimg | ⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → [ 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) ) | |
| 50 | 49 | elv | ⊢ ( [ 𝑦 / 𝑥 ] ( ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → [ 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) |
| 51 | 46 48 50 | 3imtr3i | ⊢ ( Lim 𝑦 → ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 ( 𝜏 → 𝜒 ) → [ 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) |
| 52 | 38 51 | biimtrrid | ⊢ ( Lim 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( 𝜏 → 𝜑 ) → [ 𝑦 / 𝑥 ] ( 𝜏 → 𝜑 ) ) ) |
| 53 | 10 34 52 | tfindes | ⊢ ( 𝑥 ∈ On → ( 𝜏 → 𝜑 ) ) |