This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sdomg | ⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0domg | ⊢ ( 𝐴 ∈ 𝑉 → ∅ ≼ 𝐴 ) | |
| 2 | brsdom | ⊢ ( ∅ ≺ 𝐴 ↔ ( ∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴 ) ) | |
| 3 | 2 | baib | ⊢ ( ∅ ≼ 𝐴 → ( ∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴 ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴 ) ) |
| 5 | en0r | ⊢ ( ∅ ≈ 𝐴 ↔ 𝐴 = ∅ ) | |
| 6 | 5 | necon3bbii | ⊢ ( ¬ ∅ ≈ 𝐴 ↔ 𝐴 ≠ ∅ ) |
| 7 | 4 6 | bitrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |