This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006) (Revised by Mario Carneiro, 10-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtoclgaf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| vtoclgaf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| vtoclgaf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtoclgaf.4 | ⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) | ||
| Assertion | vtoclgaf | ⊢ ( 𝐴 ∈ 𝐵 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclgaf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | vtoclgaf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | vtoclgaf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | vtoclgaf.4 | ⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) | |
| 5 | 1 | nfel1 | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 |
| 6 | 5 2 | nfim | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 → 𝜓 ) |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 8 | 7 3 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) |
| 9 | 1 6 8 4 | vtoclgf | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) |
| 10 | 9 | pm2.43i | ⊢ ( 𝐴 ∈ 𝐵 → 𝜓 ) |