This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for ordinal numbers. Theorem 7M(b) of Enderton p. 192. Theorem 1.9(ii) of Schloeder p. 1. (Contributed by NM, 11-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ontr1 | ⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐶 ∈ On → Ord 𝐶 ) | |
| 2 | ordtr1 | ⊢ ( Ord 𝐶 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |