This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ontr1

Description: Transitive law for ordinal numbers. Theorem 7M(b) of Enderton p. 192. Theorem 1.9(ii) of Schloeder p. 1. (Contributed by NM, 11-Aug-1994)

Ref Expression
Assertion ontr1 ( 𝐶 ∈ On → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐶 ∈ On → Ord 𝐶 )
2 ordtr1 ( Ord 𝐶 → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )
3 1 2 syl ( 𝐶 ∈ On → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )