This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of an indexed union. C depends on x and should be thought of as C ( x ) . (Contributed by NM, 26-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iundom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) | |
| 2 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → 𝐴 ∈ 𝑉 ) | |
| 3 | ovex | ⊢ ( 𝐵 ↑m 𝐶 ) ∈ V | |
| 4 | 3 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V |
| 5 | iunexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) | |
| 6 | 2 4 5 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V ) |
| 7 | numth3 | ⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ V → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card ) |
| 9 | numacn | ⊢ ( 𝐴 ∈ 𝑉 → ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ dom card → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ AC 𝐴 ) ) | |
| 10 | 2 8 9 | sylc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ∈ AC 𝐴 ) |
| 11 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) | |
| 12 | reldom | ⊢ Rel ≼ | |
| 13 | 12 | brrelex1i | ⊢ ( 𝐶 ≼ 𝐵 → 𝐶 ∈ V ) |
| 14 | 13 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
| 15 | iunexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V ) | |
| 16 | 14 15 | sylan2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V ) |
| 17 | 1 10 11 | iundom2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ≼ ( 𝐴 × 𝐵 ) ) |
| 18 | 12 | brrelex2i | ⊢ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ≼ ( 𝐴 × 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ V ) |
| 19 | numth3 | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝐴 × 𝐵 ) ∈ dom card ) | |
| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ dom card ) |
| 21 | numacn | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐶 ∈ V → ( ( 𝐴 × 𝐵 ) ∈ dom card → ( 𝐴 × 𝐵 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 22 | 16 20 21 | sylc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ( 𝐴 × 𝐵 ) ∈ AC ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 23 | 1 10 11 22 | iundomg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ≼ 𝐵 ) → ∪ 𝑥 ∈ 𝐴 𝐶 ≼ ( 𝐴 × 𝐵 ) ) |