This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of TakeutiZaring p. 28. (Contributed by NM, 7-Apr-1995) (Revised by Mario Carneiro, 22-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resfunexg | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres | ⊢ ( Fun 𝐴 → Fun ( 𝐴 ↾ 𝐵 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → Fun ( 𝐴 ↾ 𝐵 ) ) |
| 3 | 2 | funfnd | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) Fn dom ( 𝐴 ↾ 𝐵 ) ) |
| 4 | dffn5 | ⊢ ( ( 𝐴 ↾ 𝐵 ) Fn dom ( 𝐴 ↾ 𝐵 ) ↔ ( 𝐴 ↾ 𝐵 ) = ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ) ) | |
| 5 | 3 4 | sylib | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) = ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ) ) |
| 6 | fvex | ⊢ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ∈ V | |
| 7 | 6 | fnasrn | ⊢ ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) ) = ran ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) |
| 8 | 5 7 | eqtrdi | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) = ran ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) ) |
| 9 | opex | ⊢ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ∈ V | |
| 10 | eqid | ⊢ ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) | |
| 11 | 9 10 | dmmpti | ⊢ dom ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) = dom ( 𝐴 ↾ 𝐵 ) |
| 12 | 11 | imaeq2i | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) ) = ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) |
| 13 | imadmrn | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) ) = ran ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) | |
| 14 | 12 13 | eqtr3i | ⊢ ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) = ran ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) |
| 15 | 8 14 | eqtr4di | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) = ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) ) |
| 16 | funmpt | ⊢ Fun ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) | |
| 17 | dmresexg | ⊢ ( 𝐵 ∈ 𝐶 → dom ( 𝐴 ↾ 𝐵 ) ∈ V ) | |
| 18 | 17 | adantl | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → dom ( 𝐴 ↾ 𝐵 ) ∈ V ) |
| 19 | funimaexg | ⊢ ( ( Fun ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) ∧ dom ( 𝐴 ↾ 𝐵 ) ∈ V ) → ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) ∈ V ) | |
| 20 | 16 18 19 | sylancr | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↦ 〈 𝑥 , ( ( 𝐴 ↾ 𝐵 ) ‘ 𝑥 ) 〉 ) “ dom ( 𝐴 ↾ 𝐵 ) ) ∈ V ) |
| 21 | 15 20 | eqeltrd | ⊢ ( ( Fun 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 ↾ 𝐵 ) ∈ V ) |