This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onssr1 | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 2 | 1 | simpri | ⊢ Lim dom 𝑅1 |
| 3 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 4 | ordtr1 | ⊢ ( Ord dom 𝑅1 → ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) ) | |
| 5 | 2 3 4 | mp2b | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ dom 𝑅1 ) → 𝑥 ∈ dom 𝑅1 ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ dom 𝑅1 ) |
| 7 | rankonidlem | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) |
| 9 | 8 | simprd | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( rank ‘ 𝑥 ) = 𝑥 ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 11 | 9 10 | eqeltrd | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( rank ‘ 𝑥 ) ∈ 𝐴 ) |
| 12 | 8 | simpld | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 13 | simpl | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ dom 𝑅1 ) | |
| 14 | rankr1ag | ⊢ ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐴 ∈ dom 𝑅1 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) | |
| 15 | 12 13 14 | syl2anc | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 16 | 11 15 | mpbird | ⊢ ( ( 𝐴 ∈ dom 𝑅1 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) |
| 17 | 16 | ex | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ 𝐴 ) ) ) |
| 18 | 17 | ssrdv | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ ( 𝑅1 ‘ 𝐴 ) ) |