This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of TakeutiZaring p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limomss | ⊢ ( Lim 𝐴 → ω ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 2 | ordeleqon | ⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) | |
| 3 | elom | ⊢ ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) ) | |
| 4 | 3 | simprbi | ⊢ ( 𝑥 ∈ ω → ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) |
| 5 | limeq | ⊢ ( 𝑦 = 𝐴 → ( Lim 𝑦 ↔ Lim 𝐴 ) ) | |
| 6 | eleq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 7 | 5 6 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ↔ ( Lim 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
| 8 | 7 | spcgv | ⊢ ( 𝐴 ∈ On → ( ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) → ( Lim 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
| 9 | 4 8 | syl5 | ⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ ω → ( Lim 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
| 10 | 9 | com23 | ⊢ ( 𝐴 ∈ On → ( Lim 𝐴 → ( 𝑥 ∈ ω → 𝑥 ∈ 𝐴 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑥 ∈ ω → 𝑥 ∈ 𝐴 ) ) |
| 12 | 11 | ssrdv | ⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ω ⊆ 𝐴 ) |
| 13 | 12 | ex | ⊢ ( 𝐴 ∈ On → ( Lim 𝐴 → ω ⊆ 𝐴 ) ) |
| 14 | omsson | ⊢ ω ⊆ On | |
| 15 | sseq2 | ⊢ ( 𝐴 = On → ( ω ⊆ 𝐴 ↔ ω ⊆ On ) ) | |
| 16 | 14 15 | mpbiri | ⊢ ( 𝐴 = On → ω ⊆ 𝐴 ) |
| 17 | 16 | a1d | ⊢ ( 𝐴 = On → ( Lim 𝐴 → ω ⊆ 𝐴 ) ) |
| 18 | 13 17 | jaoi | ⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ( Lim 𝐴 → ω ⊆ 𝐴 ) ) |
| 19 | 2 18 | sylbi | ⊢ ( Ord 𝐴 → ( Lim 𝐴 → ω ⊆ 𝐴 ) ) |
| 20 | 1 19 | mpcom | ⊢ ( Lim 𝐴 → ω ⊆ 𝐴 ) |