This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | winalim | ⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winainf | ⊢ ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 ) | |
| 2 | winacard | ⊢ ( 𝐴 ∈ Inaccw → ( card ‘ 𝐴 ) = 𝐴 ) | |
| 3 | cardlim | ⊢ ( ω ⊆ ( card ‘ 𝐴 ) ↔ Lim ( card ‘ 𝐴 ) ) | |
| 4 | sseq2 | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ω ⊆ ( card ‘ 𝐴 ) ↔ ω ⊆ 𝐴 ) ) | |
| 5 | limeq | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( Lim ( card ‘ 𝐴 ) ↔ Lim 𝐴 ) ) | |
| 6 | 4 5 | bibi12d | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( ω ⊆ ( card ‘ 𝐴 ) ↔ Lim ( card ‘ 𝐴 ) ) ↔ ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) ) |
| 7 | 3 6 | mpbii | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) |
| 8 | 2 7 | syl | ⊢ ( 𝐴 ∈ Inaccw → ( ω ⊆ 𝐴 ↔ Lim 𝐴 ) ) |
| 9 | 1 8 | mpbid | ⊢ ( 𝐴 ∈ Inaccw → Lim 𝐴 ) |