This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inawina | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfon | ⊢ ( cf ‘ 𝐴 ) ∈ On | |
| 2 | eleq1 | ⊢ ( ( cf ‘ 𝐴 ) = 𝐴 → ( ( cf ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) ) | |
| 3 | 1 2 | mpbii | ⊢ ( ( cf ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ On ) |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) → 𝐴 ∈ On ) |
| 5 | idd | ⊢ ( 𝐴 ∈ On → ( 𝐴 ≠ ∅ → 𝐴 ≠ ∅ ) ) | |
| 6 | idd | ⊢ ( 𝐴 ∈ On → ( ( cf ‘ 𝐴 ) = 𝐴 → ( cf ‘ 𝐴 ) = 𝐴 ) ) | |
| 7 | inawinalem | ⊢ ( 𝐴 ∈ On → ( ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) | |
| 8 | 5 6 7 | 3anim123d | ⊢ ( 𝐴 ∈ On → ( ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) → ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) ) |
| 9 | 4 8 | mpcom | ⊢ ( ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) → ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 10 | elina | ⊢ ( 𝐴 ∈ Inacc ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 ) ) | |
| 11 | elwina | ⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) | |
| 12 | 9 10 11 | 3imtr4i | ⊢ ( 𝐴 ∈ Inacc → 𝐴 ∈ Inaccw ) |