This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Give a formula for the evaluation of a polynomial given assignments from variables to values. This is the sum of the evaluations for each term (corresponding to a bag of variables), that is, the coefficient times the product of each variable raised to the corresponding power. (Contributed by SN, 5-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvvval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsvvval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsvvval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsvvval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsvvval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlsvvval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsvvval.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | ||
| evlsvvval.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| evlsvvval.x | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evlsvvval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsvvval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsvvval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsvvval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| evlsvvval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlsvvval | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvvval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsvvval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsvvval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | evlsvvval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evlsvvval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 6 | evlsvvval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 7 | evlsvvval.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | |
| 8 | evlsvvval.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 9 | evlsvvval.x | ⊢ · = ( .r ‘ 𝑆 ) | |
| 10 | evlsvvval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 11 | evlsvvval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 12 | evlsvvval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 13 | evlsvvval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 14 | evlsvvval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 15 | fveq1 | ⊢ ( 𝑙 = 𝐴 → ( 𝑙 ‘ 𝑖 ) = ( 𝐴 ‘ 𝑖 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑙 = 𝐴 → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) |
| 17 | 16 | mpteq2dv | ⊢ ( 𝑙 = 𝐴 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( 𝑙 = 𝐴 → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) = ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝑙 = 𝐴 → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) = ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) |
| 20 | 19 | mpteq2dv | ⊢ ( 𝑙 = 𝐴 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝑙 = 𝐴 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 22 | eqid | ⊢ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 23 | eqid | ⊢ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 24 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) | |
| 25 | eqid | ⊢ ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 26 | eqid | ⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 27 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) | |
| 28 | 1 2 3 5 6 4 22 23 24 25 26 27 10 11 12 13 | evlsvval | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) Σg ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) ) |
| 29 | sneq | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → { 𝑥 } = { ( 𝐹 ‘ 𝑏 ) } ) | |
| 30 | 29 | xpeq2d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) = ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 32 | 2 31 3 5 13 | mplelf | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) |
| 33 | 4 | subrgbas | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 34 | 12 33 | syl | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 35 | 34 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : 𝐷 ⟶ 𝑅 ↔ 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑈 ) ) ) |
| 36 | 32 35 | mpbird | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝑅 ) |
| 37 | 36 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝑅 ) |
| 38 | ovex | ⊢ ( 𝐾 ↑m 𝐼 ) ∈ V | |
| 39 | snex | ⊢ { ( 𝐹 ‘ 𝑏 ) } ∈ V | |
| 40 | 38 39 | xpex | ⊢ ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∈ V |
| 41 | 40 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∈ V ) |
| 42 | 26 30 37 41 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ) |
| 43 | 5 | psrbagf | ⊢ ( 𝑏 ∈ 𝐷 → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 44 | 43 | adantl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 45 | 44 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 Fn 𝐼 ) |
| 46 | 38 | mptex | ⊢ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ V |
| 47 | 46 27 | fnmpti | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) Fn 𝐼 |
| 48 | 47 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) Fn 𝐼 ) |
| 49 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑉 ) |
| 50 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 51 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑖 ) = ( 𝑏 ‘ 𝑖 ) ) | |
| 52 | fveq2 | ⊢ ( 𝑥 = 𝑖 → ( 𝑎 ‘ 𝑥 ) = ( 𝑎 ‘ 𝑖 ) ) | |
| 53 | 52 | mpteq2dv | ⊢ ( 𝑥 = 𝑖 → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) = ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) |
| 54 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) | |
| 55 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 56 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ CRing ) |
| 57 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 58 | elmapi | ⊢ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) → 𝑎 : 𝐼 ⟶ 𝐾 ) | |
| 59 | 58 | ffvelcdmda | ⊢ ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑖 ) ∈ 𝐾 ) |
| 60 | 59 | ancoms | ⊢ ( ( 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑎 ‘ 𝑖 ) ∈ 𝐾 ) |
| 61 | 60 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑎 ‘ 𝑖 ) ∈ 𝐾 ) |
| 62 | 61 | fmpttd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 63 | 22 6 55 56 57 62 | pwselbasr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 64 | 27 53 54 63 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ‘ 𝑖 ) = ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) |
| 65 | 45 48 49 49 50 51 64 | offval | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ) ) |
| 66 | 23 55 | mgpbas | ⊢ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 67 | 11 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 68 | ovexd | ⊢ ( 𝜑 → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 69 | 22 | pwsring | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ∈ Ring ) |
| 70 | 67 68 69 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ∈ Ring ) |
| 71 | 23 | ringmgp | ⊢ ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ∈ Ring → ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ Mnd ) |
| 72 | 70 71 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ Mnd ) |
| 73 | 72 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ Mnd ) |
| 74 | 44 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
| 75 | 66 24 73 74 63 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 76 | 22 6 55 56 57 75 | pwselbas | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 77 | 76 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 78 | ovex | ⊢ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ∈ V | |
| 79 | eqid | ⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) | |
| 80 | 78 79 | fnmpti | ⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) Fn ( 𝐾 ↑m 𝐼 ) |
| 81 | 80 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 82 | eqid | ⊢ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) = ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) | |
| 83 | fveq1 | ⊢ ( 𝑎 = 𝑝 → ( 𝑎 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑖 ) ) | |
| 84 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 85 | fvexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑝 ‘ 𝑖 ) ∈ V ) | |
| 86 | 82 83 84 85 | fvmptd3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 ) = ( 𝑝 ‘ 𝑖 ) ) |
| 87 | 86 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑝 ‘ 𝑖 ) ) ) |
| 88 | 67 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑆 ∈ Ring ) |
| 89 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 90 | 74 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
| 91 | 63 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 92 | 22 55 23 7 24 8 88 89 90 91 84 | pwsexpg | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ‘ 𝑝 ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ‘ 𝑝 ) ) ) |
| 93 | fveq1 | ⊢ ( 𝑚 = 𝑝 → ( 𝑚 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑖 ) ) | |
| 94 | 93 | oveq2d | ⊢ ( 𝑚 = 𝑝 → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑝 ‘ 𝑖 ) ) ) |
| 95 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑝 ‘ 𝑖 ) ) ∈ V ) | |
| 96 | 79 94 84 95 | fvmptd3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ‘ 𝑝 ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑝 ‘ 𝑖 ) ) ) |
| 97 | 87 92 96 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑝 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ‘ 𝑝 ) = ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ‘ 𝑝 ) ) |
| 98 | 77 81 97 | eqfnfvd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) |
| 99 | 98 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) |
| 100 | 65 99 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) |
| 101 | 100 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) |
| 102 | eqid | ⊢ ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 103 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐾 ↑m 𝐼 ) ∈ V ) | |
| 104 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ CRing ) |
| 105 | 7 6 | mgpbas | ⊢ 𝐾 = ( Base ‘ 𝑀 ) |
| 106 | 7 | ringmgp | ⊢ ( 𝑆 ∈ Ring → 𝑀 ∈ Mnd ) |
| 107 | 67 106 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 108 | 107 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) ) → 𝑀 ∈ Mnd ) |
| 109 | 74 | adantrl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) ) → ( 𝑏 ‘ 𝑖 ) ∈ ℕ0 ) |
| 110 | elmapi | ⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) → 𝑚 : 𝐼 ⟶ 𝐾 ) | |
| 111 | 110 | ffvelcdmda | ⊢ ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 112 | 111 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 113 | 105 8 108 109 112 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ∈ 𝐾 ) |
| 114 | 49 | mptexd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ∈ V ) |
| 115 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ V ) | |
| 116 | funmpt | ⊢ Fun ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) | |
| 117 | 116 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → Fun ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) |
| 118 | 5 | psrbagfsupp | ⊢ ( 𝑏 ∈ 𝐷 → 𝑏 finSupp 0 ) |
| 119 | 118 | adantl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 finSupp 0 ) |
| 120 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 supp 0 ) ⊆ ( 𝑏 supp 0 ) ) | |
| 121 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 0 ∈ ℂ ) | |
| 122 | 44 120 49 121 | suppssr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑏 ‘ 𝑖 ) = 0 ) |
| 123 | 122 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 0 ↑ ( 𝑚 ‘ 𝑖 ) ) ) |
| 124 | 123 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 0 ↑ ( 𝑚 ‘ 𝑖 ) ) ) |
| 125 | eldifi | ⊢ ( 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) → 𝑖 ∈ 𝐼 ) | |
| 126 | 125 111 | sylan2 | ⊢ ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 127 | 126 | ancoms | ⊢ ( ( 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 128 | 127 | adantll | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 ) |
| 129 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 130 | 7 129 | ringidval | ⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑀 ) |
| 131 | 105 130 8 | mulg0 | ⊢ ( ( 𝑚 ‘ 𝑖 ) ∈ 𝐾 → ( 0 ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 1r ‘ 𝑆 ) ) |
| 132 | 128 131 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 0 ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 1r ‘ 𝑆 ) ) |
| 133 | 124 132 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( 1r ‘ 𝑆 ) ) |
| 134 | 133 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 1r ‘ 𝑆 ) ) ) |
| 135 | fconstmpt | ⊢ ( ( 𝐾 ↑m 𝐼 ) × { ( 1r ‘ 𝑆 ) } ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 1r ‘ 𝑆 ) ) | |
| 136 | 22 129 | pws1 | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 1r ‘ 𝑆 ) } ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 137 | 67 68 136 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐾 ↑m 𝐼 ) × { ( 1r ‘ 𝑆 ) } ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 138 | 137 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 1r ‘ 𝑆 ) } ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 139 | 135 138 | eqtr3id | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 1r ‘ 𝑆 ) ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 140 | 134 139 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑖 ∈ ( 𝐼 ∖ ( 𝑏 supp 0 ) ) ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) = ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 141 | 140 49 | suppss2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) supp ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ⊆ ( 𝑏 supp 0 ) ) |
| 142 | 114 115 117 119 141 | fsuppsssuppgd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) finSupp ( 1r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 143 | 22 6 102 23 7 103 49 104 113 142 | pwsgprod | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑖 ∈ 𝐼 ↦ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) |
| 144 | 101 143 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) |
| 145 | 42 144 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) = ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) ) |
| 146 | 6 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐾 ) |
| 147 | 33 146 | eqsstrrd | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
| 148 | 12 147 | syl | ⊢ ( 𝜑 → ( Base ‘ 𝑈 ) ⊆ 𝐾 ) |
| 149 | 32 148 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ 𝐾 ) |
| 150 | 149 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 ) |
| 151 | fconst6g | ⊢ ( ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) | |
| 152 | 150 151 | syl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 153 | 22 6 55 104 103 152 | pwselbasr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 154 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑉 ) |
| 155 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑆 ∈ CRing ) |
| 156 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 157 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑏 ∈ 𝐷 ) | |
| 158 | 5 6 7 8 154 155 156 157 | evlsvvvallem | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 159 | 158 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) : ( 𝐾 ↑m 𝐼 ) ⟶ 𝐾 ) |
| 160 | 22 6 55 104 103 159 | pwselbasr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 161 | 22 55 104 103 153 160 9 25 | pwsmulrval | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) = ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∘f · ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) ) |
| 162 | 152 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 163 | ovex | ⊢ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ∈ V | |
| 164 | eqid | ⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) = ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) | |
| 165 | 163 164 | fnmpti | ⊢ ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) Fn ( 𝐾 ↑m 𝐼 ) |
| 166 | 165 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) Fn ( 𝐾 ↑m 𝐼 ) ) |
| 167 | inidm | ⊢ ( ( 𝐾 ↑m 𝐼 ) ∩ ( 𝐾 ↑m 𝐼 ) ) = ( 𝐾 ↑m 𝐼 ) | |
| 168 | fvex | ⊢ ( 𝐹 ‘ 𝑏 ) ∈ V | |
| 169 | 168 | fvconst2 | ⊢ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) → ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ‘ 𝑙 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 170 | 169 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ‘ 𝑙 ) = ( 𝐹 ‘ 𝑏 ) ) |
| 171 | fveq1 | ⊢ ( 𝑚 = 𝑙 → ( 𝑚 ‘ 𝑖 ) = ( 𝑙 ‘ 𝑖 ) ) | |
| 172 | 171 | oveq2d | ⊢ ( 𝑚 = 𝑙 → ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) = ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) |
| 173 | 172 | mpteq2dv | ⊢ ( 𝑚 = 𝑙 → ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) |
| 174 | 173 | oveq2d | ⊢ ( 𝑚 = 𝑙 → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) = ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) |
| 175 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 176 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝐼 ∈ 𝑉 ) |
| 177 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑆 ∈ CRing ) |
| 178 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑏 ∈ 𝐷 ) | |
| 179 | 5 6 7 8 176 177 175 178 | evlsvvvallem | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 180 | 164 174 175 179 | fvmptd3 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ‘ 𝑙 ) = ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) |
| 181 | 162 166 103 103 167 170 180 | offval | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐾 ↑m 𝐼 ) × { ( 𝐹 ‘ 𝑏 ) } ) ∘f · ( 𝑚 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑚 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) |
| 182 | 145 161 181 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) |
| 183 | 182 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 184 | 183 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) Σg ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ ( 𝐹 ‘ 𝑏 ) ) ( .r ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ( ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) Σg ( 𝑏 ∘f ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) ) ) = ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) Σg ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 185 | eqid | ⊢ ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) | |
| 186 | ovexd | ⊢ ( 𝜑 → ( ℕ0 ↑m 𝐼 ) ∈ V ) | |
| 187 | 5 186 | rabexd | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 188 | 67 | ringcmnd | ⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
| 189 | 67 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → 𝑆 ∈ Ring ) |
| 190 | 150 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐾 ) |
| 191 | simpl | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → 𝜑 ) | |
| 192 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → 𝑏 ∈ 𝐷 ) | |
| 193 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 194 | 191 192 193 179 | syl21anc | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 195 | 6 9 189 190 194 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ∈ 𝐾 ) |
| 196 | 187 | mptexd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ∈ V ) |
| 197 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ∈ V ) | |
| 198 | funmpt | ⊢ Fun ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) | |
| 199 | 198 | a1i | ⊢ ( 𝜑 → Fun ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 200 | eqid | ⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) | |
| 201 | 2 3 200 13 | mplelsfi | ⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝑈 ) ) |
| 202 | ssidd | ⊢ ( 𝜑 → ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) | |
| 203 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ V ) | |
| 204 | 149 202 187 203 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑈 ) ) |
| 205 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 206 | 4 205 | subrg0 | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 207 | 12 206 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 208 | 207 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 209 | 204 208 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
| 210 | 209 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 0g ‘ 𝑆 ) ) |
| 211 | 210 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) |
| 212 | 67 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → 𝑆 ∈ Ring ) |
| 213 | eldifi | ⊢ ( 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) → 𝑏 ∈ 𝐷 ) | |
| 214 | 213 179 | sylanl2 | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ∈ 𝐾 ) |
| 215 | 6 9 205 212 214 | ringlzd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 0g ‘ 𝑆 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 216 | 211 215 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) ∧ 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ) → ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 217 | 216 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 0g ‘ 𝑆 ) ) ) |
| 218 | fconstmpt | ⊢ ( ( 𝐾 ↑m 𝐼 ) × { ( 0g ‘ 𝑆 ) } ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 0g ‘ 𝑆 ) ) | |
| 219 | 188 | cmnmndd | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 220 | 22 205 | pws0g | ⊢ ( ( 𝑆 ∈ Mnd ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → ( ( 𝐾 ↑m 𝐼 ) × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 221 | 219 68 220 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐾 ↑m 𝐼 ) × { ( 0g ‘ 𝑆 ) } ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 222 | 218 221 | eqtr3id | ⊢ ( 𝜑 → ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 223 | 222 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 224 | 217 223 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) ) → ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) = ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 225 | 224 187 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) supp ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) ⊆ ( 𝐹 supp ( 0g ‘ 𝑈 ) ) ) |
| 226 | 196 197 199 201 225 | fsuppsssuppgd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) finSupp ( 0g ‘ ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) ) ) |
| 227 | 22 6 185 68 187 188 195 226 | pwsgsum | ⊢ ( 𝜑 → ( ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) Σg ( 𝑏 ∈ 𝐷 ↦ ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 228 | 28 184 227 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐹 ) = ( 𝑙 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝑙 ‘ 𝑖 ) ) ) ) ) ) ) ) ) |
| 229 | ovexd | ⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ∈ V ) | |
| 230 | 21 228 14 229 | fvmptd4 | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |