This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsvval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsvval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlsvval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlsvval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsvval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsvval.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | ||
| evlsvval.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑇 ) | ||
| evlsvval.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| evlsvval.x | ⊢ · = ( .r ‘ 𝑇 ) | ||
| evlsvval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) | ||
| evlsvval.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) | ||
| evlsvval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsvval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsvval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsvval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| Assertion | evlsvval | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐴 ) = ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvval.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsvval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsvval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | evlsvval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 5 | evlsvval.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | evlsvval.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 7 | evlsvval.t | ⊢ 𝑇 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 8 | evlsvval.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑇 ) | |
| 9 | evlsvval.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 10 | evlsvval.x | ⊢ · = ( .r ‘ 𝑇 ) | |
| 11 | evlsvval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐾 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 12 | evlsvval.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑎 ∈ ( 𝐾 ↑m 𝐼 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ) | |
| 13 | evlsvval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 14 | evlsvval.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 15 | evlsvval.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 16 | evlsvval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 17 | fveq1 | ⊢ ( 𝑝 = 𝐴 → ( 𝑝 ‘ 𝑏 ) = ( 𝐴 ‘ 𝑏 ) ) | |
| 18 | 17 | fveq2d | ⊢ ( 𝑝 = 𝐴 → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) ) |
| 19 | 18 | oveq1d | ⊢ ( 𝑝 = 𝐴 → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 20 | 19 | mpteq2dv | ⊢ ( 𝑝 = 𝐴 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝑝 = 𝐴 → ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 22 | eqid | ⊢ ( 𝑝 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) = ( 𝑝 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | |
| 23 | 1 2 3 4 5 6 7 8 9 10 22 11 12 13 14 15 | evlsval3 | ⊢ ( 𝜑 → 𝑄 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 24 | ovexd | ⊢ ( 𝜑 → ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V ) | |
| 25 | 21 23 16 24 | fvmptd4 | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝐴 ) = ( 𝑇 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐴 ‘ 𝑏 ) ) · ( 𝑀 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |