This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring unity in a structure power. (Contributed by Mario Carneiro, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pws1.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pws1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | pws1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 1 } ) = ( 1r ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pws1.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pws1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 4 | 1 3 | pwsval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 5 | 4 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 1r ‘ 𝑌 ) = ( 1r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 6 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 7 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) | |
| 8 | fvexd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 9 | fconst6g | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Ring ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Ring ) |
| 11 | 6 7 8 10 | prds1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 1r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 12 | fn0g | ⊢ 0g Fn V | |
| 13 | fnmgp | ⊢ mulGrp Fn V | |
| 14 | ssv | ⊢ ran mulGrp ⊆ V | |
| 15 | 14 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ran mulGrp ⊆ V ) |
| 16 | fnco | ⊢ ( ( 0g Fn V ∧ mulGrp Fn V ∧ ran mulGrp ⊆ V ) → ( 0g ∘ mulGrp ) Fn V ) | |
| 17 | 12 13 15 16 | mp3an12i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 0g ∘ mulGrp ) Fn V ) |
| 18 | df-ur | ⊢ 1r = ( 0g ∘ mulGrp ) | |
| 19 | 18 | fneq1i | ⊢ ( 1r Fn V ↔ ( 0g ∘ mulGrp ) Fn V ) |
| 20 | 17 19 | sylibr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 1r Fn V ) |
| 21 | elex | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ V ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑅 ∈ V ) |
| 23 | fcoconst | ⊢ ( ( 1r Fn V ∧ 𝑅 ∈ V ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ) | |
| 24 | 20 22 23 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) ) |
| 25 | 2 | sneqi | ⊢ { 1 } = { ( 1r ‘ 𝑅 ) } |
| 26 | 25 | xpeq2i | ⊢ ( 𝐼 × { 1 } ) = ( 𝐼 × { ( 1r ‘ 𝑅 ) } ) |
| 27 | 24 26 | eqtr4di | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 1r ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝐼 × { 1 } ) ) |
| 28 | 5 11 27 | 3eqtr2rd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 1 } ) = ( 1r ‘ 𝑌 ) ) |