This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcld.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringcld.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringcld.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringcld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringcld.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | ringcld | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcld.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringcld.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringcld.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | ringcld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | ringcld.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |