This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 . (Contributed by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabexd.1 | ⊢ 𝐵 = { 𝑥 ∈ 𝐴 ∣ 𝜓 } | |
| rabexd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | rabexd | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 | ⊢ 𝐵 = { 𝑥 ∈ 𝐴 ∣ 𝜓 } | |
| 2 | rabexd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | rabexg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ V ) | |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ∈ V ) |
| 5 | 1 4 | eqeltrid | ⊢ ( 𝜑 → 𝐵 ∈ V ) |