This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a group exponentiation in a structure power. Compare pwsmulg . (Contributed by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsexpg.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsexpg.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsexpg.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) | ||
| pwsexpg.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) | ||
| pwsexpg.s | ⊢ ∙ = ( .g ‘ 𝑀 ) | ||
| pwsexpg.g | ⊢ · = ( .g ‘ 𝑇 ) | ||
| pwsexpg.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| pwsexpg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| pwsexpg.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| pwsexpg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| pwsexpg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) | ||
| Assertion | pwsexpg | ⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsexpg.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsexpg.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | pwsexpg.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) | |
| 4 | pwsexpg.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) | |
| 5 | pwsexpg.s | ⊢ ∙ = ( .g ‘ 𝑀 ) | |
| 6 | pwsexpg.g | ⊢ · = ( .g ‘ 𝑇 ) | |
| 7 | pwsexpg.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 8 | pwsexpg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 9 | pwsexpg.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 10 | pwsexpg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 11 | pwsexpg.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐼 ) | |
| 12 | 1 2 3 4 7 8 11 | pwspjmhmmgpd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ) |
| 13 | 3 2 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 14 | 13 5 6 | mhmmulg | ⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) ) |
| 15 | 12 9 10 14 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) ) |
| 16 | 1 | pwsring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Ring ) |
| 17 | 7 8 16 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 18 | 3 | ringmgp | ⊢ ( 𝑌 ∈ Ring → 𝑀 ∈ Mnd ) |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 20 | 13 5 19 9 10 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑁 ∙ 𝑋 ) ∈ 𝐵 ) |
| 21 | fveq1 | ⊢ ( 𝑥 = ( 𝑁 ∙ 𝑋 ) → ( 𝑥 ‘ 𝐴 ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) | |
| 22 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) | |
| 23 | fvex | ⊢ ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ∈ V | |
| 24 | 21 22 23 | fvmpt | ⊢ ( ( 𝑁 ∙ 𝑋 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 25 | 20 24 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑁 ∙ 𝑋 ) ) = ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) ) |
| 26 | fveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ‘ 𝐴 ) = ( 𝑋 ‘ 𝐴 ) ) | |
| 27 | fvex | ⊢ ( 𝑋 ‘ 𝐴 ) ∈ V | |
| 28 | 26 22 27 | fvmpt | ⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 29 | 10 28 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) = ( 𝑋 ‘ 𝐴 ) ) |
| 30 | 29 | oveq2d | ⊢ ( 𝜑 → ( 𝑁 · ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑋 ) ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |
| 31 | 15 25 30 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑋 ) ‘ 𝐴 ) = ( 𝑁 · ( 𝑋 ‘ 𝐴 ) ) ) |