This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsmnd.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pws0g.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | pws0g | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsmnd.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pws0g.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) | |
| 4 | simpr | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) | |
| 5 | fvexd | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 6 | fconst6g | ⊢ ( 𝑅 ∈ Mnd → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Mnd ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Mnd ) |
| 8 | 3 4 5 7 | prds0g | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 0g ∘ ( 𝐼 × { 𝑅 } ) ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 9 | fconstmpt | ⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) | |
| 10 | elex | ⊢ ( 𝑅 ∈ Mnd → 𝑅 ∈ V ) | |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ V ) |
| 12 | fconstmpt | ⊢ ( 𝐼 × { 𝑅 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) | |
| 13 | 12 | a1i | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
| 14 | fn0g | ⊢ 0g Fn V | |
| 15 | 14 | a1i | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 0g Fn V ) |
| 16 | dffn5 | ⊢ ( 0g Fn V ↔ 0g = ( 𝑟 ∈ V ↦ ( 0g ‘ 𝑟 ) ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 0g = ( 𝑟 ∈ V ↦ ( 0g ‘ 𝑟 ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
| 19 | 18 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 20 | 11 13 17 19 | fmptco | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 0g ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 21 | 9 20 | eqtr4id | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ∘ ( 𝐼 × { 𝑅 } ) ) ) |
| 22 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 23 | 1 22 | pwsval | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 0g ‘ 𝑌 ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 25 | 8 21 24 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ 𝑌 ) ) |