This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the support of a function is a subset of a finite support, it is finite. Deduction associated with fsuppsssupp . (Contributed by SN, 6-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppsssuppgd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| fsuppsssuppgd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
| fsuppsssuppgd.1 | ⊢ ( 𝜑 → Fun 𝐺 ) | ||
| fsuppsssuppgd.2 | ⊢ ( 𝜑 → 𝐹 finSupp 𝑂 ) | ||
| fsuppsssuppgd.3 | ⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) ) | ||
| Assertion | fsuppsssuppgd | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppsssuppgd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 2 | fsuppsssuppgd.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 3 | fsuppsssuppgd.1 | ⊢ ( 𝜑 → Fun 𝐺 ) | |
| 4 | fsuppsssuppgd.2 | ⊢ ( 𝜑 → 𝐹 finSupp 𝑂 ) | |
| 5 | fsuppsssuppgd.3 | ⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) ) | |
| 6 | 4 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑂 ) ∈ Fin ) |
| 7 | suppssfifsupp | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑊 ) ∧ ( ( 𝐹 supp 𝑂 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( 𝐹 supp 𝑂 ) ) ) → 𝐺 finSupp 𝑍 ) | |
| 8 | 1 3 2 6 5 7 | syl32anc | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) |