This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015) (Proof shortened by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlssca.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlssca.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlssca.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlssca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evlssca.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| evlssca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlssca.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlssca.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlssca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | ||
| Assertion | evlssca | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlssca.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlssca.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlssca.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evlssca.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | evlssca.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 6 | evlssca.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 7 | evlssca.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 8 | evlssca.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 9 | evlssca.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | |
| 10 | eqid | ⊢ ( 𝐼 mVar 𝑈 ) = ( 𝐼 mVar 𝑈 ) | |
| 11 | eqid | ⊢ ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) | |
| 12 | eqid | ⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) | |
| 13 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) | |
| 14 | 1 2 10 3 11 4 5 12 13 | evlsval2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ∧ ( ( 𝑄 ∘ 𝐴 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) ) ) ) |
| 15 | 6 7 8 14 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 𝐼 ) ) ) ∧ ( ( 𝑄 ∘ 𝐴 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑄 ∘ ( 𝐼 mVar 𝑈 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑦 ∈ ( 𝐵 ↑m 𝐼 ) ↦ ( 𝑦 ‘ 𝑥 ) ) ) ) ) ) |
| 16 | 15 | simprld | ⊢ ( 𝜑 → ( 𝑄 ∘ 𝐴 ) = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ) |
| 17 | 16 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝐴 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 19 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 20 | 3 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 21 | 8 20 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 22 | 2 18 19 5 6 21 | mplasclf | ⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 23 | 4 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 24 | 3 4 | ressbas2 | ⊢ ( 𝑅 ⊆ 𝐵 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 25 | 8 23 24 | 3syl | ⊢ ( 𝜑 → 𝑅 = ( Base ‘ 𝑈 ) ) |
| 26 | 25 | feq2d | ⊢ ( 𝜑 → ( 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ↔ 𝐴 : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑊 ) ) ) |
| 27 | 22 26 | mpbird | ⊢ ( 𝜑 → 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ) |
| 28 | fvco3 | ⊢ ( ( 𝐴 : 𝑅 ⟶ ( Base ‘ 𝑊 ) ∧ 𝑋 ∈ 𝑅 ) → ( ( 𝑄 ∘ 𝐴 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ) | |
| 29 | 27 9 28 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝐴 ) ‘ 𝑋 ) = ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ) |
| 30 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 31 | 30 | xpeq2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 32 | ovex | ⊢ ( 𝐵 ↑m 𝐼 ) ∈ V | |
| 33 | snex | ⊢ { 𝑋 } ∈ V | |
| 34 | 32 33 | xpex | ⊢ ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ∈ V |
| 35 | 31 12 34 | fvmpt | ⊢ ( 𝑋 ∈ 𝑅 → ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 36 | 9 35 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝐵 ↑m 𝐼 ) × { 𝑥 } ) ) ‘ 𝑋 ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |
| 37 | 17 29 36 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( ( 𝐵 ↑m 𝐼 ) × { 𝑋 } ) ) |