This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015) (Revised by AV, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplrcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplelsfi.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplelsfi.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| Assertion | mplelsfi | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplrcl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mplelsfi.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplelsfi.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 5 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 7 | 1 5 6 3 2 | mplelbas | ⊢ ( 𝐹 ∈ 𝐵 ↔ ( 𝐹 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝐹 finSupp 0 ) ) |
| 8 | 7 | simprbi | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |