This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reverse direction of pwselbasb : a function between the index and base set of a structure is an element of the structure power. (Contributed by SN, 29-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsbas.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsbas.f | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| pwselbas.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | ||
| pwselbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| pwselbas.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | ||
| pwselbasr.x | ⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ 𝐵 ) | ||
| Assertion | pwselbasr | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsbas.f | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | pwselbas.v | ⊢ 𝑉 = ( Base ‘ 𝑌 ) | |
| 4 | pwselbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 5 | pwselbas.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑍 ) | |
| 6 | pwselbasr.x | ⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ 𝐵 ) | |
| 7 | 1 2 3 | pwselbasb | ⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
| 8 | 4 5 7 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
| 9 | 6 8 | mpbird | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |