This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 3-Jul-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsgsum.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsgsum.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| pwsgsum.z | ⊢ 0 = ( 0g ‘ 𝑌 ) | ||
| pwsgsum.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| pwsgsum.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| pwsgsum.r | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) | ||
| pwsgsum.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) | ||
| pwsgsum.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) | ||
| Assertion | pwsgsum | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgsum.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsgsum.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | pwsgsum.z | ⊢ 0 = ( 0g ‘ 𝑌 ) | |
| 4 | pwsgsum.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 5 | pwsgsum.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 6 | pwsgsum.r | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) | |
| 7 | pwsgsum.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) | |
| 8 | pwsgsum.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) | |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 10 | 1 9 | pwsval | ⊢ ( ( 𝑅 ∈ CMnd ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 11 | 6 4 10 | syl2anc | ⊢ ( 𝜑 → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 12 | 11 | oveq1d | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ) |
| 13 | fconstmpt | ⊢ ( 𝐼 × { 𝑅 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) | |
| 14 | 13 | oveq2i | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
| 15 | eqid | ⊢ ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) | |
| 16 | fvexd | ⊢ ( 𝜑 → ( Scalar ‘ 𝑅 ) ∈ V ) | |
| 17 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CMnd ) |
| 18 | 11 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ 𝑌 ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 19 | 3 18 | eqtrid | ⊢ ( 𝜑 → 0 = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 20 | 8 19 | breqtrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 21 | 14 2 15 4 5 16 17 7 20 | prdsgsum | ⊢ ( 𝜑 → ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| 22 | 12 21 | eqtrd | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |