This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite bags have finite support. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbagfsupp | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | id | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷 ) | |
| 3 | 1 | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 4 | 3 | ffnd | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼 ) |
| 5 | 2 4 | fndmexd | ⊢ ( 𝐹 ∈ 𝐷 → 𝐼 ∈ V ) |
| 6 | 1 | psrbag | ⊢ ( 𝐼 ∈ V → ( 𝐹 ∈ 𝐷 ↔ ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) ) |
| 7 | 6 | biimpa | ⊢ ( ( 𝐼 ∈ V ∧ 𝐹 ∈ 𝐷 ) → ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 8 | 5 7 | mpancom | ⊢ ( 𝐹 ∈ 𝐷 → ( 𝐹 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 9 | 8 | simprd | ⊢ ( 𝐹 ∈ 𝐷 → ( ◡ 𝐹 “ ℕ ) ∈ Fin ) |
| 10 | fcdmnn0fsuppg | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐹 : 𝐼 ⟶ ℕ0 ) → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) | |
| 11 | 3 10 | mpdan | ⊢ ( 𝐹 ∈ 𝐷 → ( 𝐹 finSupp 0 ↔ ( ◡ 𝐹 “ ℕ ) ∈ Fin ) ) |
| 12 | 9 11 | mpbird | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 finSupp 0 ) |