This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringz.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringz.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ringlzd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringlzd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | ringlzd | ⊢ ( 𝜑 → ( 0 · 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringz.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringz.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | ringlzd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | ringlzd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | 1 2 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = 0 ) |
| 7 | 4 5 6 | syl2anc | ⊢ ( 𝜑 → ( 0 · 𝑋 ) = 0 ) |