This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite products in a power structure are taken componentwise. Compare pwsgsum . (Contributed by SN, 30-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsgprod.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| pwsgprod.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| pwsgprod.o | ⊢ 1 = ( 1r ‘ 𝑌 ) | ||
| pwsgprod.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) | ||
| pwsgprod.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) | ||
| pwsgprod.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| pwsgprod.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| pwsgprod.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| pwsgprod.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) | ||
| pwsgprod.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 1 ) | ||
| Assertion | pwsgprod | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgprod.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
| 2 | pwsgprod.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | pwsgprod.o | ⊢ 1 = ( 1r ‘ 𝑌 ) | |
| 4 | pwsgprod.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) | |
| 5 | pwsgprod.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑅 ) | |
| 6 | pwsgprod.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 7 | pwsgprod.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 8 | pwsgprod.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 9 | pwsgprod.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) | |
| 10 | pwsgprod.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 1 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 12 | 4 11 | mgpbas | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑀 ) |
| 13 | 4 3 | ringidval | ⊢ 1 = ( 0g ‘ 𝑀 ) |
| 14 | 1 | pwscrng | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ CRing ) |
| 15 | 8 6 14 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ CRing ) |
| 16 | 4 | crngmgp | ⊢ ( 𝑌 ∈ CRing → 𝑀 ∈ CMnd ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 18 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝑅 ∈ CRing ) |
| 19 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → 𝐼 ∈ 𝑉 ) |
| 20 | 9 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑈 ∈ 𝐵 ) |
| 21 | 20 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑈 ∈ 𝐵 ) |
| 22 | 21 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) : 𝐼 ⟶ 𝐵 ) |
| 23 | 1 2 11 18 19 22 | pwselbasr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ) |
| 24 | 23 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) : 𝐽 ⟶ ( Base ‘ 𝑌 ) ) |
| 25 | 12 13 17 7 24 10 | gsumcl | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 26 | 1 2 11 8 6 25 | pwselbas | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) : 𝐼 ⟶ 𝐵 ) |
| 27 | 26 | ffnd | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) Fn 𝐼 ) |
| 28 | nfcv | ⊢ Ⅎ 𝑥 𝑀 | |
| 29 | nfcv | ⊢ Ⅎ 𝑥 Σg | |
| 30 | nfcv | ⊢ Ⅎ 𝑥 𝐽 | |
| 31 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) | |
| 32 | 30 31 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) |
| 33 | 28 29 32 | nfov | ⊢ Ⅎ 𝑥 ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) |
| 34 | 33 | dffn5f | ⊢ ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) Fn 𝐼 ↔ ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 35 | 27 34 | sylib | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 36 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 37 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) | |
| 38 | 37 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑈 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) = 𝑈 ) |
| 39 | 36 20 38 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) = 𝑈 ) |
| 40 | 39 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) ) = ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 42 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑀 ∈ CMnd ) |
| 43 | 5 | crngmgp | ⊢ ( 𝑅 ∈ CRing → 𝑇 ∈ CMnd ) |
| 44 | 8 43 | syl | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
| 45 | 44 | cmnmndd | ⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑇 ∈ Mnd ) |
| 47 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐽 ∈ 𝑊 ) |
| 48 | 8 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 50 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
| 51 | 1 11 4 5 49 50 36 | pwspjmhmmgpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( 𝑀 MndHom 𝑇 ) ) |
| 52 | 23 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ) |
| 53 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 1 ) |
| 54 | fveq1 | ⊢ ( 𝑎 = ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) → ( 𝑎 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) | |
| 55 | fveq1 | ⊢ ( 𝑎 = ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) → ( 𝑎 ‘ 𝑥 ) = ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) | |
| 56 | 12 13 42 46 47 51 52 53 54 55 | gsummhm2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) ) = ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
| 57 | 41 56 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
| 58 | 57 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 59 | 35 58 | eqtr4d | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑇 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |