This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlsvvval akin to psrbagev2 . (Contributed by SN, 6-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvvvallem.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| evlsvvvallem.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsvvvallem.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | ||
| evlsvvvallem.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| evlsvvvallem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsvvvallem.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsvvvallem.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| evlsvvvallem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| Assertion | evlsvvvallem | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvvvallem.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 2 | evlsvvvallem.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 3 | evlsvvvallem.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑆 ) | |
| 4 | evlsvvvallem.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 5 | evlsvvvallem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | evlsvvvallem.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 7 | evlsvvvallem.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 8 | evlsvvvallem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 9 | 3 2 | mgpbas | ⊢ 𝐾 = ( Base ‘ 𝑀 ) |
| 10 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 11 | 3 10 | ringidval | ⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑀 ) |
| 12 | 3 | crngmgp | ⊢ ( 𝑆 ∈ CRing → 𝑀 ∈ CMnd ) |
| 13 | 6 12 | syl | ⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 14 | 6 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 15 | 3 | ringmgp | ⊢ ( 𝑆 ∈ Ring → 𝑀 ∈ Mnd ) |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → 𝑀 ∈ Mnd ) |
| 18 | 1 | psrbagf | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 : 𝐼 ⟶ ℕ0 ) |
| 19 | 8 18 | syl | ⊢ ( 𝜑 → 𝐵 : 𝐼 ⟶ ℕ0 ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → ( 𝐵 ‘ 𝑣 ) ∈ ℕ0 ) |
| 21 | elmapi | ⊢ ( 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) → 𝐴 : 𝐼 ⟶ 𝐾 ) | |
| 22 | 7 21 | syl | ⊢ ( 𝜑 → 𝐴 : 𝐼 ⟶ 𝐾 ) |
| 23 | 22 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
| 24 | 9 4 17 20 23 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ∈ 𝐾 ) |
| 25 | 24 | fmpttd | ⊢ ( 𝜑 → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) : 𝐼 ⟶ 𝐾 ) |
| 26 | 5 | mptexd | ⊢ ( 𝜑 → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ∈ V ) |
| 27 | fvexd | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ V ) | |
| 28 | 25 | ffund | ⊢ ( 𝜑 → Fun ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) |
| 29 | 1 | psrbagfsupp | ⊢ ( 𝐵 ∈ 𝐷 → 𝐵 finSupp 0 ) |
| 30 | 8 29 | syl | ⊢ ( 𝜑 → 𝐵 finSupp 0 ) |
| 31 | ssidd | ⊢ ( 𝜑 → ( 𝐵 supp 0 ) ⊆ ( 𝐵 supp 0 ) ) | |
| 32 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 33 | 19 31 5 32 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 𝐵 ‘ 𝑣 ) = 0 ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) = ( 0 ↑ ( 𝐴 ‘ 𝑣 ) ) ) |
| 35 | eldifi | ⊢ ( 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) → 𝑣 ∈ 𝐼 ) | |
| 36 | 35 23 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 ) |
| 37 | 9 11 4 | mulg0 | ⊢ ( ( 𝐴 ‘ 𝑣 ) ∈ 𝐾 → ( 0 ↑ ( 𝐴 ‘ 𝑣 ) ) = ( 1r ‘ 𝑆 ) ) |
| 38 | 36 37 | syl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( 0 ↑ ( 𝐴 ‘ 𝑣 ) ) = ( 1r ‘ 𝑆 ) ) |
| 39 | 34 38 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 𝐼 ∖ ( 𝐵 supp 0 ) ) ) → ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) = ( 1r ‘ 𝑆 ) ) |
| 40 | 39 5 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ ( 𝐵 supp 0 ) ) |
| 41 | 26 27 28 30 40 | fsuppsssuppgd | ⊢ ( 𝜑 → ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) finSupp ( 1r ‘ 𝑆 ) ) |
| 42 | 9 11 13 5 25 41 | gsumcl | ⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑣 ∈ 𝐼 ↦ ( ( 𝐵 ‘ 𝑣 ) ↑ ( 𝐴 ‘ 𝑣 ) ) ) ) ∈ 𝐾 ) |