This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the univariate polynomial evaluation for scalars. (Contributed by Thierry Arnoux, 21-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1scafv.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1scafv.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| evls1scafv.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1scafv.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evls1scafv.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | ||
| evls1scafv.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1scafv.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evls1scafv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | ||
| evls1scafv.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| Assertion | evls1scafv | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐶 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1scafv.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1scafv.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 3 | evls1scafv.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 4 | evls1scafv.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | evls1scafv.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 6 | evls1scafv.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 7 | evls1scafv.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 8 | evls1scafv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑅 ) | |
| 9 | evls1scafv.1 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 10 | 1 2 3 4 5 6 7 8 | evls1sca | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 11 | 10 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐶 ) = ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) ) |
| 12 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝐶 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) = 𝑋 ) | |
| 13 | 8 9 12 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) ‘ 𝐶 ) = 𝑋 ) |
| 14 | 11 13 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝐶 ) = 𝑋 ) |