This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvdifsupp.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| fvdifsupp.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fvdifsupp.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | ||
| fvdifsupp.4 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) | ||
| Assertion | fvdifsupp | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvdifsupp.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | fvdifsupp.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fvdifsupp.3 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑊 ) | |
| 4 | fvdifsupp.4 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ∖ ( 𝐹 supp 𝑍 ) ) ) | |
| 5 | 4 | eldifbd | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝐹 supp 𝑍 ) ) |
| 6 | 4 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 7 | elsuppfn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) | |
| 8 | 1 2 3 7 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) ) |
| 9 | 6 8 | mpbirand | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ 𝑍 ) ) |
| 10 | 9 | necon2bbid | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) = 𝑍 ↔ ¬ 𝑋 ∈ ( 𝐹 supp 𝑍 ) ) ) |
| 11 | 5 10 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |