This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmmul.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| rhmmul.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rhmmul.n | ⊢ × = ( .r ‘ 𝑆 ) | ||
| Assertion | rhmmul | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) × ( 𝐹 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmmul.x | ⊢ 𝑋 = ( Base ‘ 𝑅 ) | |
| 2 | rhmmul.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | rhmmul.n | ⊢ × = ( .r ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 6 | 4 5 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 7 | 4 1 | mgpbas | ⊢ 𝑋 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 8 | 4 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 9 | 5 3 | mgpplusg | ⊢ × = ( +g ‘ ( mulGrp ‘ 𝑆 ) ) |
| 10 | 7 8 9 | mhmlin | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) × ( 𝐹 ‘ 𝐵 ) ) ) |
| 11 | 6 10 | syl3an1 | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) × ( 𝐹 ‘ 𝐵 ) ) ) |