This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of univariate polynomials is an associative algebra. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1val.1 | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| Assertion | ply1assa | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1val.1 | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 3 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 5 | 1 3 4 | ply1subrg | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 6 | 2 5 | syl | ⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 7 | 1 3 4 | ply1lss | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 8 | 2 7 | syl | ⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 9 | 3 | psr1assa | ⊢ ( 𝑅 ∈ CRing → ( PwSer1 ‘ 𝑅 ) ∈ AssAlg ) |
| 10 | eqid | ⊢ ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 11 | 10 | subrg1cl | ⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) → ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 12 | 6 11 | syl | ⊢ ( 𝑅 ∈ CRing → ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 13 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 14 | 13 | subrgss | ⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 15 | 6 14 | syl | ⊢ ( 𝑅 ∈ CRing → ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 16 | 1 3 | ply1val | ⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 17 | 1 4 | ply1bas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 18 | 17 | oveq2i | ⊢ ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 19 | 16 18 | eqtr4i | ⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 20 | eqid | ⊢ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) = ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 21 | 19 20 13 10 | issubassa | ⊢ ( ( ( PwSer1 ‘ 𝑅 ) ∈ AssAlg ∧ ( 1r ‘ ( PwSer1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ∧ ( Base ‘ 𝑃 ) ⊆ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) → ( 𝑃 ∈ AssAlg ↔ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) ) ) |
| 22 | 9 12 15 21 | syl3anc | ⊢ ( 𝑅 ∈ CRing → ( 𝑃 ∈ AssAlg ↔ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( PwSer1 ‘ 𝑅 ) ) ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) ) ) |
| 23 | 6 8 22 | mpbir2and | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |