This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019) (Revised by AV, 23-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptnn0fsupp.0 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | |
| mptnn0fsupp.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ 𝐵 ) | ||
| mptnn0fsuppd.d | ⊢ ( 𝑘 = 𝑥 → 𝐶 = 𝐷 ) | ||
| mptnn0fsuppd.s | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝐷 = 0 ) ) | ||
| Assertion | mptnn0fsuppd | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptnn0fsupp.0 | ⊢ ( 𝜑 → 0 ∈ 𝑉 ) | |
| 2 | mptnn0fsupp.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ 𝐵 ) | |
| 3 | mptnn0fsuppd.d | ⊢ ( 𝑘 = 𝑥 → 𝐶 = 𝐷 ) | |
| 4 | mptnn0fsuppd.s | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝐷 = 0 ) ) | |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 3 | csbie | ⊢ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 𝐷 |
| 7 | id | ⊢ ( 𝐷 = 0 → 𝐷 = 0 ) | |
| 8 | 6 7 | eqtrid | ⊢ ( 𝐷 = 0 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) |
| 9 | 8 | imim2i | ⊢ ( ( 𝑠 < 𝑥 → 𝐷 = 0 ) → ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 10 | 9 | ralimi | ⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝐷 = 0 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 11 | 10 | reximi | ⊢ ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝐷 = 0 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 13 | 1 2 12 | mptnn0fsupp | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 ) |