This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra scalar lifting function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclf.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| asclf.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| asclf.r | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | ||
| asclf.l | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| asclf.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| asclf.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| Assertion | asclf | ⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclf.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | asclf.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | asclf.r | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) | |
| 4 | asclf.l | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | asclf.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | asclf.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 7 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → 𝑥 ∈ 𝐾 ) | |
| 9 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 10 | 6 9 | ringidcl | ⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
| 11 | 3 10 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 1r ‘ 𝑊 ) ∈ 𝐵 ) |
| 13 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 14 | 6 2 13 5 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ ( 1r ‘ 𝑊 ) ∈ 𝐵 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ 𝐵 ) |
| 15 | 7 8 12 14 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ∈ 𝐵 ) |
| 16 | 1 2 5 13 9 | asclfval | ⊢ 𝐴 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 17 | 15 16 | fmptd | ⊢ ( 𝜑 → 𝐴 : 𝐾 ⟶ 𝐵 ) |