This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 7-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1coe.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1coe.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| ply1coe.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| ply1coe.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| ply1coe.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) | ||
| ply1coe.e | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| ply1coe.a | ⊢ 𝐴 = ( coe1 ‘ 𝐾 ) | ||
| Assertion | ply1coe | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1coe.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1coe.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | ply1coe.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | ply1coe.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 5 | ply1coe.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) | |
| 6 | ply1coe.e | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 7 | ply1coe.a | ⊢ 𝐴 = ( coe1 ‘ 𝐾 ) | |
| 8 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 9 | psr1baslem | ⊢ ( ℕ0 ↑m 1o ) = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑑 “ ℕ ) ∈ Fin } | |
| 10 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 12 | 1onn | ⊢ 1o ∈ ω | |
| 13 | 12 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 1o ∈ ω ) |
| 14 | 1 3 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 15 | 1 8 4 | ply1vsca | ⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
| 16 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 17 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 ∈ 𝐵 ) | |
| 18 | 8 9 10 11 13 14 15 16 17 | mplcoe1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐾 ‘ 𝑎 ) · ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) ) |
| 19 | 7 | fvcoe1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝐾 ‘ 𝑎 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) |
| 20 | 19 | adantll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝐾 ‘ 𝑎 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) |
| 21 | 12 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 1o ∈ ω ) |
| 22 | eqid | ⊢ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) = ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) | |
| 23 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) | |
| 24 | eqid | ⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) | |
| 25 | simpll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 𝑅 ∈ Ring ) | |
| 26 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 𝑎 ∈ ( ℕ0 ↑m 1o ) ) | |
| 27 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) | |
| 28 | 0ex | ⊢ ∅ ∈ V | |
| 29 | fveq2 | ⊢ ( 𝑏 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) | |
| 30 | 29 | oveq1d | ⊢ ( 𝑏 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
| 31 | 29 | oveq2d | ⊢ ( 𝑏 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
| 32 | 30 31 | eqeq12d | ⊢ ( 𝑏 = ∅ → ( ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) ) |
| 33 | 28 32 | ralsn | ⊢ ( ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
| 34 | 27 33 | sylibr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) | |
| 36 | 35 | oveq2d | ⊢ ( 𝑥 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) ) |
| 37 | 35 | oveq1d | ⊢ ( 𝑥 = ∅ → ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
| 38 | 36 37 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) ) |
| 39 | 38 | ralbidv | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) ) |
| 40 | 28 39 | ralsn | ⊢ ( ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) = ( ( ( 1o mVar 𝑅 ) ‘ ∅ ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
| 41 | 34 40 | sylibr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
| 42 | df1o2 | ⊢ 1o = { ∅ } | |
| 43 | 42 | raleqi | ⊢ ( ∀ 𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
| 44 | 42 43 | raleqbii | ⊢ ( ∀ 𝑥 ∈ 1o ∀ 𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ↔ ∀ 𝑥 ∈ { ∅ } ∀ 𝑏 ∈ { ∅ } ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
| 45 | 41 44 | sylibr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ∀ 𝑥 ∈ 1o ∀ 𝑏 ∈ 1o ( ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ) = ( ( ( 1o mVar 𝑅 ) ‘ 𝑥 ) ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑏 ) ) ) |
| 46 | 8 9 10 11 21 22 23 24 25 26 45 | mplcoe5 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) ) |
| 47 | 42 | mpteq1i | ⊢ ( 𝑐 ∈ 1o ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) = ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) |
| 48 | 47 | oveq2i | ⊢ ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) |
| 49 | 8 | mplring | ⊢ ( ( 1o ∈ ω ∧ 𝑅 ∈ Ring ) → ( 1o mPoly 𝑅 ) ∈ Ring ) |
| 50 | 12 49 | mpan | ⊢ ( 𝑅 ∈ Ring → ( 1o mPoly 𝑅 ) ∈ Ring ) |
| 51 | 22 | ringmgp | ⊢ ( ( 1o mPoly 𝑅 ) ∈ Ring → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ) |
| 52 | 50 51 | syl | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ) |
| 54 | 28 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ∅ ∈ V ) |
| 55 | 22 14 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 56 | 55 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐵 = ( Base ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ) |
| 57 | 5 3 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 58 | 57 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑀 ) ) |
| 59 | ssv | ⊢ 𝐵 ⊆ V | |
| 60 | 59 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐵 ⊆ V ) |
| 61 | ovexd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ) → ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) ∈ V ) | |
| 62 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 63 | 1 8 62 | ply1mulr | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 64 | 22 63 | mgpplusg | ⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) |
| 65 | 5 62 | mgpplusg | ⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝑀 ) |
| 66 | 64 65 | eqtr3i | ⊢ ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ( +g ‘ 𝑀 ) |
| 67 | 66 | oveqi | ⊢ ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) |
| 68 | 67 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ) → ( 𝑎 ( +g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ) |
| 69 | 23 6 56 58 60 61 68 | mulgpropd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) = ↑ ) |
| 70 | 69 | oveqd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) = ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) |
| 71 | 70 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) = ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) |
| 72 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 73 | 5 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd ) |
| 74 | 72 73 | syl | ⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 75 | 74 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 𝑀 ∈ Mnd ) |
| 76 | elmapi | ⊢ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) → 𝑎 : 1o ⟶ ℕ0 ) | |
| 77 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 78 | ffvelcdm | ⊢ ( ( 𝑎 : 1o ⟶ ℕ0 ∧ ∅ ∈ 1o ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 ) | |
| 79 | 76 77 78 | sylancl | ⊢ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 ) |
| 80 | 79 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑎 ‘ ∅ ) ∈ ℕ0 ) |
| 81 | 2 1 3 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → 𝑋 ∈ 𝐵 ) |
| 83 | 57 6 75 80 82 | mulgnn0cld | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ∈ 𝐵 ) |
| 84 | 71 83 | eqeltrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ∈ 𝐵 ) |
| 85 | fveq2 | ⊢ ( 𝑐 = ∅ → ( 𝑎 ‘ 𝑐 ) = ( 𝑎 ‘ ∅ ) ) | |
| 86 | fveq2 | ⊢ ( 𝑐 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) | |
| 87 | 2 | vr1val | ⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 88 | 86 87 | eqtr4di | ⊢ ( 𝑐 = ∅ → ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) = 𝑋 ) |
| 89 | 85 88 | oveq12d | ⊢ ( 𝑐 = ∅ → ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ) |
| 90 | 55 89 | gsumsn | ⊢ ( ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ∈ Mnd ∧ ∅ ∈ V ∧ ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ∈ 𝐵 ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ) |
| 91 | 53 54 84 90 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ { ∅ } ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ) |
| 92 | 48 91 | eqtrid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) Σg ( 𝑐 ∈ 1o ↦ ( ( 𝑎 ‘ 𝑐 ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) ( ( 1o mVar 𝑅 ) ‘ 𝑐 ) ) ) ) = ( ( 𝑎 ‘ ∅ ) ( .g ‘ ( mulGrp ‘ ( 1o mPoly 𝑅 ) ) ) 𝑋 ) ) |
| 93 | 46 92 71 | 3eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) |
| 94 | 20 93 | oveq12d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑎 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝐾 ‘ 𝑎 ) · ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) |
| 95 | 94 | mpteq2dva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐾 ‘ 𝑎 ) · ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) |
| 96 | 95 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐾 ‘ 𝑎 ) · ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ if ( 𝑏 = 𝑎 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) ) |
| 97 | nn0ex | ⊢ ℕ0 ∈ V | |
| 98 | 97 | mptex | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∈ V |
| 99 | 98 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∈ V ) |
| 100 | 1 | fvexi | ⊢ 𝑃 ∈ V |
| 101 | 100 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝑃 ∈ V ) |
| 102 | ovexd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 1o mPoly 𝑅 ) ∈ V ) | |
| 103 | 3 14 | eqtr3i | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 104 | 103 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 105 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 106 | 1 8 105 | ply1plusg | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 107 | 106 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) ) |
| 108 | 99 101 102 104 107 | gsumpropd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 109 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 110 | 8 1 109 | ply1mpl0 | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ ( 1o mPoly 𝑅 ) ) |
| 111 | 8 | mpllmod | ⊢ ( ( 1o ∈ ω ∧ 𝑅 ∈ Ring ) → ( 1o mPoly 𝑅 ) ∈ LMod ) |
| 112 | 12 16 111 | sylancr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 1o mPoly 𝑅 ) ∈ LMod ) |
| 113 | lmodcmn | ⊢ ( ( 1o mPoly 𝑅 ) ∈ LMod → ( 1o mPoly 𝑅 ) ∈ CMnd ) | |
| 114 | 112 113 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 1o mPoly 𝑅 ) ∈ CMnd ) |
| 115 | 97 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ℕ0 ∈ V ) |
| 116 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 117 | 116 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 118 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 119 | 7 3 1 118 | coe1f | ⊢ ( 𝐾 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 120 | 119 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 121 | 120 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 122 | 1 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 123 | 122 | eqcomd | ⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 124 | 123 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 125 | 124 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 126 | 121 125 | eleqtrrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 127 | 74 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
| 128 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 129 | 81 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 130 | 57 6 127 128 129 | mulgnn0cld | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
| 131 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 132 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 133 | 3 131 4 132 | lmodvscl | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 134 | 117 126 130 133 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 135 | 134 | fmpttd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐵 ) |
| 136 | 1 2 3 4 5 6 7 | ply1coefsupp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 137 | eqid | ⊢ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) = ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) | |
| 138 | 42 97 28 137 | mapsnf1o2 | ⊢ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 |
| 139 | 138 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 ) |
| 140 | 14 110 114 115 135 136 139 | gsumf1o | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) ) ) |
| 141 | eqidd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) = ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) | |
| 142 | eqidd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) | |
| 143 | fveq2 | ⊢ ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) ) | |
| 144 | oveq1 | ⊢ ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( 𝑘 ↑ 𝑋 ) = ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) | |
| 145 | 143 144 | oveq12d | ⊢ ( 𝑘 = ( 𝑎 ‘ ∅ ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) |
| 146 | 80 141 142 145 | fmptco | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) = ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) |
| 147 | 146 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ∘ ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑎 ‘ ∅ ) ) ) ) = ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) ) |
| 148 | 108 140 147 | 3eqtrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( ( 1o mPoly 𝑅 ) Σg ( 𝑎 ∈ ( ℕ0 ↑m 1o ) ↦ ( ( 𝐴 ‘ ( 𝑎 ‘ ∅ ) ) · ( ( 𝑎 ‘ ∅ ) ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 149 | 18 96 148 | 3eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |