This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1rhm.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1rhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| evls1rhm.t | ⊢ 𝑇 = ( 𝑆 ↑s 𝐵 ) | ||
| evls1rhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1rhm.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| Assertion | evls1rhm | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1rhm.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1rhm.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | evls1rhm.t | ⊢ 𝑇 = ( 𝑆 ↑s 𝐵 ) | |
| 4 | evls1rhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evls1rhm.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 6 | 2 | subrgss | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑅 ⊆ 𝐵 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ⊆ 𝐵 ) |
| 8 | elpwg | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵 ) ) |
| 10 | 7 9 | mpbird | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑅 ∈ 𝒫 𝐵 ) |
| 11 | eqid | ⊢ ( 1o evalSub 𝑆 ) = ( 1o evalSub 𝑆 ) | |
| 12 | 1 11 2 | evls1fval | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵 ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
| 13 | 10 12 | syldan | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) | |
| 15 | 2 3 14 | evls1rhmlem | ⊢ ( 𝑆 ∈ CRing → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ) |
| 16 | 1on | ⊢ 1o ∈ On | |
| 17 | eqid | ⊢ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) = ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) | |
| 18 | eqid | ⊢ ( 1o mPoly 𝑈 ) = ( 1o mPoly 𝑈 ) | |
| 19 | eqid | ⊢ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) | |
| 20 | 17 18 4 19 2 | evlsrhm | ⊢ ( ( 1o ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 21 | 16 20 | mp3an1 | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 22 | eqidd | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 23 | eqidd | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) | |
| 24 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 25 | 5 24 | ply1bas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) |
| 26 | 25 | a1i | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ ( 1o mPoly 𝑈 ) ) ) |
| 27 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 28 | 5 18 27 | ply1plusg | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ ( 1o mPoly 𝑈 ) ) |
| 29 | 28 | a1i | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( +g ‘ 𝑊 ) = ( +g ‘ ( 1o mPoly 𝑈 ) ) ) |
| 30 | 29 | oveqdr | ⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 1o mPoly 𝑈 ) ) 𝑦 ) ) |
| 31 | eqidd | ⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) ) | |
| 32 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 33 | 5 18 32 | ply1mulr | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ ( 1o mPoly 𝑈 ) ) |
| 34 | 33 | a1i | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( .r ‘ 𝑊 ) = ( .r ‘ ( 1o mPoly 𝑈 ) ) ) |
| 35 | 34 | oveqdr | ⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 1o mPoly 𝑈 ) ) 𝑦 ) ) |
| 36 | eqidd | ⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) ) → ( 𝑥 ( .r ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) 𝑦 ) ) | |
| 37 | 22 23 26 23 30 31 35 36 | rhmpropd | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) = ( ( 1o mPoly 𝑈 ) RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 38 | 21 37 | eleqtrrd | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 39 | rhmco | ⊢ ( ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ ( ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) RingHom 𝑇 ) ∧ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ∈ ( 𝑊 RingHom ( 𝑆 ↑s ( 𝐵 ↑m 1o ) ) ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ∈ ( 𝑊 RingHom 𝑇 ) ) | |
| 40 | 15 38 39 | syl2an2r | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑆 ) ‘ 𝑅 ) ) ∈ ( 𝑊 RingHom 𝑇 ) ) |
| 41 | 13 40 | eqeltrd | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑇 ) ) |