This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sfi.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| coe1sfi.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1sfi.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1sfi.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | coe1sfi | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sfi.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| 2 | coe1sfi.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1sfi.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | coe1sfi.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | df1o2 | ⊢ 1o = { ∅ } | |
| 6 | nn0ex | ⊢ ℕ0 ∈ V | |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | eqid | ⊢ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) | |
| 9 | 5 6 7 8 | mapsncnv | ⊢ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) |
| 10 | 1 2 3 9 | coe1fval2 | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
| 11 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) | |
| 13 | 3 2 | ply1bascl2 | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 14 | 11 12 4 13 | mplelsfi | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
| 15 | 5 6 7 8 | mapsnf1o2 | ⊢ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 |
| 16 | f1ocnv | ⊢ ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 → ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) ) | |
| 17 | f1of1 | ⊢ ( ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) → ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0 ↑m 1o ) ) | |
| 18 | 15 16 17 | mp2b | ⊢ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0 ↑m 1o ) |
| 19 | 18 | a1i | ⊢ ( 𝐹 ∈ 𝐵 → ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ℕ0 –1-1→ ( ℕ0 ↑m 1o ) ) |
| 20 | 4 | fvexi | ⊢ 0 ∈ V |
| 21 | 20 | a1i | ⊢ ( 𝐹 ∈ 𝐵 → 0 ∈ V ) |
| 22 | id | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵 ) | |
| 23 | 14 19 21 22 | fsuppco | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) finSupp 0 ) |
| 24 | 10 23 | eqbrtrd | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |