This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluation of a univariate subring polynomial is the same as the evaluation in the bigger ring. (Contributed by Thierry Arnoux, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1evl2.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| ressply1evl2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| ressply1evl2.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| ressply1evl2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| ressply1evl2.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| ressply1evl.e | ⊢ 𝐸 = ( eval1 ‘ 𝑆 ) | ||
| ressply1evl.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| ressply1evl.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| Assertion | ressply1evl | ⊢ ( 𝜑 → 𝑄 = ( 𝐸 ↾ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl2.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | ressply1evl2.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 3 | ressply1evl2.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 4 | ressply1evl2.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | ressply1evl2.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 6 | ressply1evl.e | ⊢ 𝐸 = ( eval1 ‘ 𝑆 ) | |
| 7 | ressply1evl.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 8 | ressply1evl.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 9 | 6 2 | evl1fval1 | ⊢ 𝐸 = ( 𝑆 evalSub1 𝐾 ) |
| 10 | eqid | ⊢ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) = ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) | |
| 11 | eqid | ⊢ ( 𝑆 ↾s 𝐾 ) = ( 𝑆 ↾s 𝐾 ) | |
| 12 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) | |
| 13 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝑆 ∈ CRing ) |
| 14 | 7 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 15 | 2 | subrgid | ⊢ ( 𝑆 ∈ Ring → 𝐾 ∈ ( SubRing ‘ 𝑆 ) ) |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ 𝑆 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝐾 ∈ ( SubRing ‘ 𝑆 ) ) |
| 18 | eqid | ⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) | |
| 19 | eqid | ⊢ ( PwSer1 ‘ 𝑈 ) = ( PwSer1 ‘ 𝑈 ) | |
| 20 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) | |
| 21 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) | |
| 22 | 18 4 3 5 8 19 20 21 | ressply1bas2 | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ) |
| 23 | inss2 | ⊢ ( ( Base ‘ ( PwSer1 ‘ 𝑈 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) | |
| 24 | 22 23 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
| 25 | 2 | ressid | ⊢ ( 𝑆 ∈ CRing → ( 𝑆 ↾s 𝐾 ) = 𝑆 ) |
| 26 | 7 25 | syl | ⊢ ( 𝜑 → ( 𝑆 ↾s 𝐾 ) = 𝑆 ) |
| 27 | 26 | fveq2d | ⊢ ( 𝜑 → ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) = ( Poly1 ‘ 𝑆 ) ) |
| 28 | 27 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) = ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
| 29 | 24 28 | sseqtrrd | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) ) |
| 30 | 29 | sselda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝑚 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑆 ↾s 𝐾 ) ) ) ) |
| 31 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 32 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑆 ) ) = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 33 | eqid | ⊢ ( coe1 ‘ 𝑚 ) = ( coe1 ‘ 𝑚 ) | |
| 34 | 9 2 10 11 12 13 17 30 31 32 33 | evls1fpws | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → ( 𝐸 ‘ 𝑚 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑚 ) ‘ 𝑘 ) ( .r ‘ 𝑆 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑥 ) ) ) ) ) ) |
| 35 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) |
| 36 | simpr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → 𝑚 ∈ 𝐵 ) | |
| 37 | 1 2 3 4 5 13 35 36 31 32 33 | evls1fpws | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → ( 𝑄 ‘ 𝑚 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑆 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑚 ) ‘ 𝑘 ) ( .r ‘ 𝑆 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑆 ) ) 𝑥 ) ) ) ) ) ) |
| 38 | 34 37 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝐵 ) → ( 𝐸 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) |
| 39 | 38 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝐵 ( 𝐸 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) |
| 40 | eqid | ⊢ ( 𝑆 ↑s 𝐾 ) = ( 𝑆 ↑s 𝐾 ) | |
| 41 | 6 18 40 2 | evl1rhm | ⊢ ( 𝑆 ∈ CRing → 𝐸 ∈ ( ( Poly1 ‘ 𝑆 ) RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 42 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) | |
| 43 | 21 42 | rhmf | ⊢ ( 𝐸 ∈ ( ( Poly1 ‘ 𝑆 ) RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝐸 : ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 44 | 7 41 43 | 3syl | ⊢ ( 𝜑 → 𝐸 : ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 45 | 44 | ffnd | ⊢ ( 𝜑 → 𝐸 Fn ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) |
| 46 | 1 2 40 4 3 | evls1rhm | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 47 | 7 8 46 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 48 | 5 42 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 49 | 47 48 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 50 | 49 | ffnd | ⊢ ( 𝜑 → 𝑄 Fn 𝐵 ) |
| 51 | fvreseq1 | ⊢ ( ( ( 𝐸 Fn ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ∧ 𝑄 Fn 𝐵 ) ∧ 𝐵 ⊆ ( Base ‘ ( Poly1 ‘ 𝑆 ) ) ) → ( ( 𝐸 ↾ 𝐵 ) = 𝑄 ↔ ∀ 𝑚 ∈ 𝐵 ( 𝐸 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) ) | |
| 52 | 45 50 24 51 | syl21anc | ⊢ ( 𝜑 → ( ( 𝐸 ↾ 𝐵 ) = 𝑄 ↔ ∀ 𝑚 ∈ 𝐵 ( 𝐸 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) ) |
| 53 | 39 52 | mpbird | ⊢ ( 𝜑 → ( 𝐸 ↾ 𝐵 ) = 𝑄 ) |
| 54 | 53 | eqcomd | ⊢ ( 𝜑 → 𝑄 = ( 𝐸 ↾ 𝐵 ) ) |