This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vr1cl.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| vr1cl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| vr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| Assertion | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vr1cl.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 2 | vr1cl.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | vr1cl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | 1 | vr1val | ⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |
| 5 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 6 | eqid | ⊢ ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 ) | |
| 7 | 2 3 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 8 | 1onn | ⊢ 1o ∈ ω | |
| 9 | 8 | a1i | ⊢ ( 𝑅 ∈ Ring → 1o ∈ ω ) |
| 10 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 11 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 12 | 11 | a1i | ⊢ ( 𝑅 ∈ Ring → ∅ ∈ 1o ) |
| 13 | 5 6 7 9 10 12 | mvrcl | ⊢ ( 𝑅 ∈ Ring → ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ 𝐵 ) |
| 14 | 4 13 | eqeltrid | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |