This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1lmod.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| Assertion | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1lmod.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
| 3 | 2 | psr1lmod | ⊢ ( 𝑅 ∈ Ring → ( PwSer1 ‘ 𝑅 ) ∈ LMod ) |
| 4 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 6 | 4 5 | ply1bas | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 7 | 4 2 5 | ply1lss | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 8 | 6 7 | eqeltrrid | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 9 | 1 2 | ply1val | ⊢ 𝑃 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 10 | eqid | ⊢ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) = ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 11 | 9 10 | lsslmod | ⊢ ( ( ( PwSer1 ‘ 𝑅 ) ∈ LMod ∧ ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ ( LSubSp ‘ ( PwSer1 ‘ 𝑅 ) ) ) → 𝑃 ∈ LMod ) |
| 12 | 3 8 11 | syl2anc | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |