This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgring.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| Assertion | subrgcrng | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 3 | 2 | adantl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
| 4 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 5 | 1 4 | mgpress | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) = ( mulGrp ‘ 𝑆 ) ) |
| 6 | 4 | crngmgp | ⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 7 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 8 | 7 | ringmgp | ⊢ ( 𝑆 ∈ Ring → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 9 | 3 8 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( mulGrp ‘ 𝑆 ) ∈ Mnd ) |
| 10 | 5 9 | eqeltrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ Mnd ) |
| 11 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) | |
| 12 | 11 | subcmn | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ CMnd ∧ ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ Mnd ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ CMnd ) |
| 13 | 6 10 12 | syl2an2r | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s 𝐴 ) ∈ CMnd ) |
| 14 | 5 13 | eqeltrrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( mulGrp ‘ 𝑆 ) ∈ CMnd ) |
| 15 | 7 | iscrng | ⊢ ( 𝑆 ∈ CRing ↔ ( 𝑆 ∈ Ring ∧ ( mulGrp ‘ 𝑆 ) ∈ CMnd ) ) |
| 16 | 3 14 15 | sylanbrc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ CRing ) |