This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvcnvre . (Contributed by Mario Carneiro, 19-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnvre.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℝ ) ) | |
| dvcnvre.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = 𝑋 ) | ||
| dvcnvre.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | ||
| dvcnvre.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | ||
| dvcnvre.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| dvcnvre.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| dvcnvre.s | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) | ||
| dvcnvre.t | ⊢ 𝑇 = ( topGen ‘ ran (,) ) | ||
| dvcnvre.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | ||
| dvcnvre.m | ⊢ 𝑀 = ( 𝐽 ↾t 𝑋 ) | ||
| dvcnvre.n | ⊢ 𝑁 = ( 𝐽 ↾t 𝑌 ) | ||
| Assertion | dvcnvrelem2 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ∧ ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnvre.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℝ ) ) | |
| 2 | dvcnvre.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = 𝑋 ) | |
| 3 | dvcnvre.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | |
| 4 | dvcnvre.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 5 | dvcnvre.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 6 | dvcnvre.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 7 | dvcnvre.s | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) | |
| 8 | dvcnvre.t | ⊢ 𝑇 = ( topGen ‘ ran (,) ) | |
| 9 | dvcnvre.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 10 | dvcnvre.m | ⊢ 𝑀 = ( 𝐽 ↾t 𝑋 ) | |
| 11 | dvcnvre.n | ⊢ 𝑁 = ( 𝐽 ↾t 𝑌 ) | |
| 12 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 13 | 8 12 | eqeltri | ⊢ 𝑇 ∈ Top |
| 14 | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 15 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) | |
| 16 | 4 14 15 | 3syl | ⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) |
| 17 | cncff | ⊢ ( 𝐹 ∈ ( 𝑋 –cn→ ℝ ) → 𝐹 : 𝑋 ⟶ ℝ ) | |
| 18 | frn | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ → ran 𝐹 ⊆ ℝ ) | |
| 19 | 1 17 18 | 3syl | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 20 | 16 19 | eqsstrrd | ⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
| 21 | imassrn | ⊢ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ran 𝐹 | |
| 22 | 21 16 | sseqtrid | ⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ 𝑌 ) |
| 23 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 24 | 8 | unieqi | ⊢ ∪ 𝑇 = ∪ ( topGen ‘ ran (,) ) |
| 25 | 23 24 | eqtr4i | ⊢ ℝ = ∪ 𝑇 |
| 26 | 25 | ntrss | ⊢ ( ( 𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ 𝑌 ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ) |
| 27 | 13 20 22 26 | mp3an2i | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ) |
| 28 | 1 2 3 4 5 6 7 | dvcnvrelem1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 29 | 8 | fveq2i | ⊢ ( int ‘ 𝑇 ) = ( int ‘ ( topGen ‘ ran (,) ) ) |
| 30 | 29 | fveq1i | ⊢ ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 31 | 28 30 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 32 | 27 31 | sseldd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ) |
| 33 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 34 | f1of | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 35 | 4 33 34 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 36 | ffun | ⊢ ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 → Fun ◡ 𝐹 ) | |
| 37 | funcnvres | ⊢ ( Fun ◡ 𝐹 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) | |
| 38 | 35 36 37 | 3syl | ⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 39 | dvbsss | ⊢ dom ( ℝ D 𝐹 ) ⊆ ℝ | |
| 40 | 2 39 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
| 41 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 42 | 40 41 | sstrdi | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 43 | cncfss | ⊢ ( ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ∧ 𝑋 ⊆ ℂ ) → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) ) | |
| 44 | 7 42 43 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) ) |
| 45 | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –1-1→ 𝑌 ) | |
| 46 | 4 45 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 47 | f1ores | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) | |
| 48 | 46 7 47 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 49 | 9 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐽 ↾t ℝ ) |
| 50 | 8 49 | eqtri | ⊢ 𝑇 = ( 𝐽 ↾t ℝ ) |
| 51 | 50 | oveq1i | ⊢ ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( ( 𝐽 ↾t ℝ ) ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
| 52 | 9 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 53 | 7 40 | sstrd | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ ℝ ) |
| 54 | reex | ⊢ ℝ ∈ V | |
| 55 | 54 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 56 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝐽 ↾t ℝ ) ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) | |
| 57 | 52 53 55 56 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝐽 ↾t ℝ ) ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 58 | 51 57 | eqtrid | ⊢ ( 𝜑 → ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 59 | 40 5 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 60 | 6 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 61 | 59 60 | resubcld | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ∈ ℝ ) |
| 62 | 59 60 | readdcld | ⊢ ( 𝜑 → ( 𝐶 + 𝑅 ) ∈ ℝ ) |
| 63 | eqid | ⊢ ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) | |
| 64 | 8 63 | icccmp | ⊢ ( ( ( 𝐶 − 𝑅 ) ∈ ℝ ∧ ( 𝐶 + 𝑅 ) ∈ ℝ ) → ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ Comp ) |
| 65 | 61 62 64 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ Comp ) |
| 66 | 58 65 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ Comp ) |
| 67 | f1of | ⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⟶ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) | |
| 68 | 48 67 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⟶ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 69 | 19 41 | sstrdi | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
| 70 | 21 69 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℂ ) |
| 71 | rescncf | ⊢ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 → ( 𝐹 ∈ ( 𝑋 –cn→ ℝ ) → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ℝ ) ) ) | |
| 72 | 7 1 71 | sylc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ℝ ) ) |
| 73 | cncfcdm | ⊢ ( ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℂ ∧ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ℝ ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ↔ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⟶ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) | |
| 74 | 70 72 73 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ↔ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⟶ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 75 | 68 74 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 76 | eqid | ⊢ ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) | |
| 77 | 9 76 | cncfcnvcn | ⊢ ( ( ( 𝐽 ↾t ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ Comp ∧ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ↔ ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 78 | 66 75 77 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) : ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –1-1-onto→ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ↔ ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 79 | 48 78 | mpbid | ⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 80 | 44 79 | sseldd | ⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) ) |
| 81 | eqid | ⊢ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) | |
| 82 | 9 81 10 | cncfcn | ⊢ ( ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℂ ∧ 𝑋 ⊆ ℂ ) → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) = ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) Cn 𝑀 ) ) |
| 83 | 70 42 82 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) –cn→ 𝑋 ) = ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) Cn 𝑀 ) ) |
| 84 | 80 83 | eleqtrd | ⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) Cn 𝑀 ) ) |
| 85 | 59 6 | ltsubrpd | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) < 𝐶 ) |
| 86 | 61 59 85 | ltled | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ≤ 𝐶 ) |
| 87 | 59 6 | ltaddrpd | ⊢ ( 𝜑 → 𝐶 < ( 𝐶 + 𝑅 ) ) |
| 88 | 59 62 87 | ltled | ⊢ ( 𝜑 → 𝐶 ≤ ( 𝐶 + 𝑅 ) ) |
| 89 | elicc2 | ⊢ ( ( ( 𝐶 − 𝑅 ) ∈ ℝ ∧ ( 𝐶 + 𝑅 ) ∈ ℝ ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐶 − 𝑅 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐶 + 𝑅 ) ) ) ) | |
| 90 | 61 62 89 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐶 − 𝑅 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐶 + 𝑅 ) ) ) ) |
| 91 | 59 86 88 90 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
| 92 | ffun | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ → Fun 𝐹 ) | |
| 93 | 1 17 92 | 3syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 94 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ → dom 𝐹 = 𝑋 ) | |
| 95 | 1 17 94 | 3syl | ⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 96 | 7 95 | sseqtrrd | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ dom 𝐹 ) |
| 97 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ dom 𝐹 ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) | |
| 98 | 93 96 97 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 99 | 91 98 | mpd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 100 | 9 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 101 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℂ ) → ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) | |
| 102 | 100 70 101 | sylancr | ⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 103 | toponuni | ⊢ ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) | |
| 104 | 102 103 | syl | ⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 105 | 99 104 | eleqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 106 | eqid | ⊢ ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) | |
| 107 | 106 | cncnpi | ⊢ ( ( ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) Cn 𝑀 ) ∧ ( 𝐹 ‘ 𝐶 ) ∈ ∪ ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 108 | 84 105 107 | syl2anc | ⊢ ( 𝜑 → ◡ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 109 | 38 108 | eqeltrrd | ⊢ ( 𝜑 → ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 110 | 11 | oveq1i | ⊢ ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( 𝐽 ↾t 𝑌 ) ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 111 | ssexg | ⊢ ( ( 𝑌 ⊆ ℝ ∧ ℝ ∈ V ) → 𝑌 ∈ V ) | |
| 112 | 20 54 111 | sylancl | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 113 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ 𝑌 ∧ 𝑌 ∈ V ) → ( ( 𝐽 ↾t 𝑌 ) ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) | |
| 114 | 52 22 112 113 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝐽 ↾t 𝑌 ) ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 115 | 110 114 | eqtrid | ⊢ ( 𝜑 → ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 116 | 115 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) = ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ) |
| 117 | 116 | fveq1d | ⊢ ( 𝜑 → ( ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) = ( ( ( 𝐽 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 118 | 109 117 | eleqtrrd | ⊢ ( 𝜑 → ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 119 | 20 41 | sstrdi | ⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
| 120 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑌 ⊆ ℂ ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 121 | 100 119 120 | sylancr | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 122 | 11 121 | eqeltrid | ⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ 𝑌 ) ) |
| 123 | topontop | ⊢ ( 𝑁 ∈ ( TopOn ‘ 𝑌 ) → 𝑁 ∈ Top ) | |
| 124 | 122 123 | syl | ⊢ ( 𝜑 → 𝑁 ∈ Top ) |
| 125 | toponuni | ⊢ ( 𝑁 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝑁 ) | |
| 126 | 122 125 | syl | ⊢ ( 𝜑 → 𝑌 = ∪ 𝑁 ) |
| 127 | 22 126 | sseqtrd | ⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ∪ 𝑁 ) |
| 128 | 22 20 | sstrd | ⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ℝ ) |
| 129 | difssd | ⊢ ( 𝜑 → ( ℝ ∖ 𝑌 ) ⊆ ℝ ) | |
| 130 | 128 129 | unssd | ⊢ ( 𝜑 → ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ⊆ ℝ ) |
| 131 | ssun1 | ⊢ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) | |
| 132 | 131 | a1i | ⊢ ( 𝜑 → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) |
| 133 | 25 | ntrss | ⊢ ( ( 𝑇 ∈ Top ∧ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ⊆ ℝ ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) → ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ) |
| 134 | 13 130 132 133 | mp3an2i | ⊢ ( 𝜑 → ( ( int ‘ 𝑇 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ) |
| 135 | 134 31 | sseldd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ) |
| 136 | f1of | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 137 | 4 136 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 138 | 137 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ 𝑌 ) |
| 139 | 135 138 | elind | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 140 | eqid | ⊢ ( 𝑇 ↾t 𝑌 ) = ( 𝑇 ↾t 𝑌 ) | |
| 141 | 25 140 | restntr | ⊢ ( ( 𝑇 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ 𝑌 ) → ( ( int ‘ ( 𝑇 ↾t 𝑌 ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 142 | 13 20 22 141 | mp3an2i | ⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝑌 ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
| 143 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ ℝ ∧ ℝ ∈ V ) → ( ( 𝐽 ↾t ℝ ) ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) ) | |
| 144 | 52 20 55 143 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝐽 ↾t ℝ ) ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) ) |
| 145 | 50 | oveq1i | ⊢ ( 𝑇 ↾t 𝑌 ) = ( ( 𝐽 ↾t ℝ ) ↾t 𝑌 ) |
| 146 | 144 145 11 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝑇 ↾t 𝑌 ) = 𝑁 ) |
| 147 | 146 | fveq2d | ⊢ ( 𝜑 → ( int ‘ ( 𝑇 ↾t 𝑌 ) ) = ( int ‘ 𝑁 ) ) |
| 148 | 147 | fveq1d | ⊢ ( 𝜑 → ( ( int ‘ ( 𝑇 ↾t 𝑌 ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( int ‘ 𝑁 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 149 | 142 148 | eqtr3d | ⊢ ( 𝜑 → ( ( ( int ‘ 𝑇 ) ‘ ( ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∪ ( ℝ ∖ 𝑌 ) ) ) ∩ 𝑌 ) = ( ( int ‘ 𝑁 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 150 | 139 149 | eleqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑁 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 151 | 126 | feq2d | ⊢ ( 𝜑 → ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ↔ ◡ 𝐹 : ∪ 𝑁 ⟶ 𝑋 ) ) |
| 152 | 35 151 | mpbid | ⊢ ( 𝜑 → ◡ 𝐹 : ∪ 𝑁 ⟶ 𝑋 ) |
| 153 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑋 ⊆ ℂ ) → ( 𝐽 ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) | |
| 154 | 100 42 153 | sylancr | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 155 | 10 154 | eqeltrid | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑋 ) ) |
| 156 | toponuni | ⊢ ( 𝑀 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝑀 ) | |
| 157 | feq3 | ⊢ ( 𝑋 = ∪ 𝑀 → ( ◡ 𝐹 : ∪ 𝑁 ⟶ 𝑋 ↔ ◡ 𝐹 : ∪ 𝑁 ⟶ ∪ 𝑀 ) ) | |
| 158 | 155 156 157 | 3syl | ⊢ ( 𝜑 → ( ◡ 𝐹 : ∪ 𝑁 ⟶ 𝑋 ↔ ◡ 𝐹 : ∪ 𝑁 ⟶ ∪ 𝑀 ) ) |
| 159 | 152 158 | mpbid | ⊢ ( 𝜑 → ◡ 𝐹 : ∪ 𝑁 ⟶ ∪ 𝑀 ) |
| 160 | eqid | ⊢ ∪ 𝑁 = ∪ 𝑁 | |
| 161 | eqid | ⊢ ∪ 𝑀 = ∪ 𝑀 | |
| 162 | 160 161 | cnprest | ⊢ ( ( ( 𝑁 ∈ Top ∧ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ⊆ ∪ 𝑁 ) ∧ ( ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑁 ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ◡ 𝐹 : ∪ 𝑁 ⟶ ∪ 𝑀 ) ) → ( ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ↔ ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 163 | 124 127 150 159 162 | syl22anc | ⊢ ( 𝜑 → ( ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ↔ ( ◡ 𝐹 ↾ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∈ ( ( ( 𝑁 ↾t ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |
| 164 | 118 163 | mpbird | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) |
| 165 | 32 164 | jca | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ 𝑇 ) ‘ 𝑌 ) ∧ ◡ 𝐹 ∈ ( ( 𝑁 CnP 𝑀 ) ‘ ( 𝐹 ‘ 𝐶 ) ) ) ) |