This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite cmphaushmeo for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfcnvcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| cncfcnvcn.k | ⊢ 𝐾 = ( 𝐽 ↾t 𝑋 ) | ||
| Assertion | cncfcnvcn | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfcnvcn.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | cncfcnvcn.k | ⊢ 𝐾 = ( 𝐽 ↾t 𝑋 ) | |
| 3 | simpr | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) | |
| 4 | cncfrss | ⊢ ( 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) → 𝑋 ⊆ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑋 ⊆ ℂ ) |
| 6 | cncfrss2 | ⊢ ( 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) → 𝑌 ⊆ ℂ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑌 ⊆ ℂ ) |
| 8 | eqid | ⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t 𝑌 ) | |
| 9 | 1 2 8 | cncfcn | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 –cn→ 𝑌 ) = ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ) |
| 10 | 5 7 9 | syl2anc | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝑋 –cn→ 𝑌 ) = ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ) |
| 11 | 3 10 | eleqtrd | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ) |
| 12 | ishmeo | ⊢ ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ ( 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ∧ ◡ 𝐹 ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) ) | |
| 13 | 12 | baib | ⊢ ( 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) ) |
| 14 | 11 13 | syl | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) ) |
| 15 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 16 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 17 | 16 | toponunii | ⊢ ℂ = ∪ 𝐽 |
| 18 | 17 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ ) → 𝑋 = ∪ ( 𝐽 ↾t 𝑋 ) ) |
| 19 | 15 5 18 | sylancr | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑋 = ∪ ( 𝐽 ↾t 𝑋 ) ) |
| 20 | 2 | unieqi | ⊢ ∪ 𝐾 = ∪ ( 𝐽 ↾t 𝑋 ) |
| 21 | 19 20 | eqtr4di | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑋 = ∪ 𝐾 ) |
| 22 | 21 | f1oeq2d | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ↔ 𝐹 : ∪ 𝐾 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
| 23 | 17 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 24 | 15 7 23 | sylancr | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
| 25 | 24 | f1oeq3d | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ 𝐹 : 𝑋 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
| 26 | simpl | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝐾 ∈ Comp ) | |
| 27 | 1 | cnfldhaus | ⊢ 𝐽 ∈ Haus |
| 28 | cnex | ⊢ ℂ ∈ V | |
| 29 | 28 | ssex | ⊢ ( 𝑌 ⊆ ℂ → 𝑌 ∈ V ) |
| 30 | 7 29 | syl | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → 𝑌 ∈ V ) |
| 31 | resthaus | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝑌 ∈ V ) → ( 𝐽 ↾t 𝑌 ) ∈ Haus ) | |
| 32 | 27 30 31 | sylancr | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐽 ↾t 𝑌 ) ∈ Haus ) |
| 33 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 34 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝑌 ) = ∪ ( 𝐽 ↾t 𝑌 ) | |
| 35 | 33 34 | cmphaushmeo | ⊢ ( ( 𝐾 ∈ Comp ∧ ( 𝐽 ↾t 𝑌 ) ∈ Haus ∧ 𝐹 ∈ ( 𝐾 Cn ( 𝐽 ↾t 𝑌 ) ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ 𝐹 : ∪ 𝐾 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
| 36 | 26 32 11 35 | syl3anc | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ↔ 𝐹 : ∪ 𝐾 –1-1-onto→ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
| 37 | 22 25 36 | 3bitr4d | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ 𝐹 ∈ ( 𝐾 Homeo ( 𝐽 ↾t 𝑌 ) ) ) ) |
| 38 | 1 8 2 | cncfcn | ⊢ ( ( 𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ ) → ( 𝑌 –cn→ 𝑋 ) = ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) |
| 39 | 7 5 38 | syl2anc | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝑌 –cn→ 𝑋 ) = ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) |
| 40 | 39 | eleq2d | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ↔ ◡ 𝐹 ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) ) |
| 41 | 14 37 40 | 3bitr4d | ⊢ ( ( 𝐾 ∈ Comp ∧ 𝐹 ∈ ( 𝑋 –cn→ 𝑌 ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) ) |