This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative rule for inverse functions. If F is a continuous and differentiable bijective function from X to Y which never has derivative 0 , then ` ``' F is also differentiable, and its derivative is the reciprocal of the derivative of F ` . (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnvre.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℝ ) ) | |
| dvcnvre.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = 𝑋 ) | ||
| dvcnvre.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | ||
| dvcnvre.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | ||
| Assertion | dvcnvre | ⊢ ( 𝜑 → ( ℝ D ◡ 𝐹 ) = ( 𝑥 ∈ 𝑌 ↦ ( 1 / ( ( ℝ D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnvre.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℝ ) ) | |
| 2 | dvcnvre.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = 𝑋 ) | |
| 3 | dvcnvre.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | |
| 4 | dvcnvre.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 5 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 6 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 7 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 9 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 10 | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 11 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) | |
| 12 | 4 10 11 | 3syl | ⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) |
| 13 | cncff | ⊢ ( 𝐹 ∈ ( 𝑋 –cn→ ℝ ) → 𝐹 : 𝑋 ⟶ ℝ ) | |
| 14 | frn | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ → ran 𝐹 ⊆ ℝ ) | |
| 15 | 1 13 14 | 3syl | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 16 | 12 15 | eqsstrrd | ⊢ ( 𝜑 → 𝑌 ⊆ ℝ ) |
| 17 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 18 | 17 | ntrss2 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝑌 ⊆ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) ⊆ 𝑌 ) |
| 19 | 9 16 18 | sylancr | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) ⊆ 𝑌 ) |
| 20 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 21 | 4 20 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 22 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 23 | 22 | rexmet | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
| 24 | dvbsss | ⊢ dom ( ℝ D 𝐹 ) ⊆ ℝ | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) ⊆ ℝ ) |
| 26 | 2 25 | eqsstrrd | ⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
| 27 | 17 | ntrss2 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝑋 ⊆ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 28 | 9 26 27 | sylancr | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 29 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 30 | 29 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 31 | 1 13 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 32 | fss | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 33 | 31 29 32 | sylancl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 34 | 30 33 26 6 5 | dvbssntr | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ) |
| 35 | 2 34 | eqsstrrd | ⊢ ( 𝜑 → 𝑋 ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) ) |
| 36 | 28 35 | eqssd | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) = 𝑋 ) |
| 37 | 17 | isopn3 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝑋 ⊆ ℝ ) → ( 𝑋 ∈ ( topGen ‘ ran (,) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) = 𝑋 ) ) |
| 38 | 9 26 37 | sylancr | ⊢ ( 𝜑 → ( 𝑋 ∈ ( topGen ‘ ran (,) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑋 ) = 𝑋 ) ) |
| 39 | 36 38 | mpbird | ⊢ ( 𝜑 → 𝑋 ∈ ( topGen ‘ ran (,) ) ) |
| 40 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 41 | f1of | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 42 | 4 40 41 | 3syl | ⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 43 | 42 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 44 | eqid | ⊢ ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) | |
| 45 | 22 44 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 46 | 45 | mopni2 | ⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ 𝑋 ∈ ( topGen ‘ ran (,) ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) → ∃ 𝑟 ∈ ℝ+ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) |
| 47 | 23 39 43 46 | mp3an2ani | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑟 ∈ ℝ+ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) |
| 48 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → 𝐹 ∈ ( 𝑋 –cn→ ℝ ) ) |
| 49 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → dom ( ℝ D 𝐹 ) = 𝑋 ) |
| 50 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) |
| 51 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 52 | 43 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 53 | rphalfcl | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) | |
| 54 | 53 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 55 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → 𝑋 ⊆ ℝ ) |
| 56 | 55 52 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 57 | 54 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( 𝑟 / 2 ) ∈ ℝ ) |
| 58 | 56 57 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) ∈ ℝ ) |
| 59 | 56 57 | readdcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ∈ ℝ ) |
| 60 | elicc2 | ⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) ∈ ℝ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ∈ ℝ ) → ( 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) ) | |
| 61 | 58 59 60 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) ) |
| 62 | 61 | biimpa | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( 𝑦 ∈ ℝ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) |
| 63 | 62 | simp1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → 𝑦 ∈ ℝ ) |
| 64 | 56 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 65 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → 𝑟 ∈ ℝ+ ) | |
| 66 | 65 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → 𝑟 ∈ ℝ ) |
| 67 | 64 66 | resubcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) ∈ ℝ ) |
| 68 | 58 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) ∈ ℝ ) |
| 69 | 65 53 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 70 | 69 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( 𝑟 / 2 ) ∈ ℝ ) |
| 71 | rphalflt | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) < 𝑟 ) | |
| 72 | 65 71 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( 𝑟 / 2 ) < 𝑟 ) |
| 73 | 70 66 64 72 | ltsub2dd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) < ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) ) |
| 74 | 62 | simp2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) ≤ 𝑦 ) |
| 75 | 67 68 63 73 74 | ltletrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) < 𝑦 ) |
| 76 | 59 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ∈ ℝ ) |
| 77 | 64 66 | readdcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ∈ ℝ ) |
| 78 | 62 | simp3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → 𝑦 ≤ ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) |
| 79 | 70 66 64 72 | ltadd2dd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) < ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) |
| 80 | 63 76 77 78 79 | lelttrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → 𝑦 < ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) |
| 81 | 67 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) ∈ ℝ* ) |
| 82 | 77 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ∈ ℝ* ) |
| 83 | elioo2 | ⊢ ( ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) ∈ ℝ* ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ∈ ℝ* ) → ( 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) (,) ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) < 𝑦 ∧ 𝑦 < ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ) ) | |
| 84 | 81 82 83 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → ( 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) (,) ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) < 𝑦 ∧ 𝑦 < ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ) ) |
| 85 | 63 75 80 84 | mpbir3and | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) ∧ 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ) → 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) (,) ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ) |
| 86 | 85 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) → 𝑦 ∈ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) (,) ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ) ) |
| 87 | 86 | ssrdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ⊆ ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) (,) ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ) |
| 88 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 89 | 88 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → 𝑟 ∈ ℝ ) |
| 90 | 22 | bl2ioo | ⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) (,) ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ) |
| 91 | 56 89 90 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( ( ◡ 𝐹 ‘ 𝑥 ) − 𝑟 ) (,) ( ( ◡ 𝐹 ‘ 𝑥 ) + 𝑟 ) ) ) |
| 92 | 87 91 | sseqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ⊆ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ) |
| 93 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) | |
| 94 | 92 93 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) − ( 𝑟 / 2 ) ) [,] ( ( ◡ 𝐹 ‘ 𝑥 ) + ( 𝑟 / 2 ) ) ) ⊆ 𝑋 ) |
| 95 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 96 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) | |
| 97 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) | |
| 98 | 48 49 50 51 52 54 94 95 5 96 97 | dvcnvrelem2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ⊆ 𝑋 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) ∧ ◡ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 99 | 47 98 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) ∧ ◡ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 100 | 99 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) ) |
| 101 | 21 100 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) ) |
| 102 | 19 101 | eqelssd | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) = 𝑌 ) |
| 103 | 17 | isopn3 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝑌 ⊆ ℝ ) → ( 𝑌 ∈ ( topGen ‘ ran (,) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) = 𝑌 ) ) |
| 104 | 9 16 103 | sylancr | ⊢ ( 𝜑 → ( 𝑌 ∈ ( topGen ‘ ran (,) ) ↔ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ 𝑌 ) = 𝑌 ) ) |
| 105 | 102 104 | mpbird | ⊢ ( 𝜑 → 𝑌 ∈ ( topGen ‘ ran (,) ) ) |
| 106 | 99 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ◡ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
| 107 | 21 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ 𝑥 ) ) |
| 108 | 106 107 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ◡ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ 𝑥 ) ) |
| 109 | 108 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑌 ◡ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ 𝑥 ) ) |
| 110 | 5 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 111 | 16 29 | sstrdi | ⊢ ( 𝜑 → 𝑌 ⊆ ℂ ) |
| 112 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑌 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 113 | 110 111 112 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 114 | 26 29 | sstrdi | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 115 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑋 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) | |
| 116 | 110 114 115 | sylancr | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 117 | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) → ( ◡ 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ↔ ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑌 ◡ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ 𝑥 ) ) ) ) | |
| 118 | 113 116 117 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ↔ ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑌 ◡ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) CnP ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ‘ 𝑥 ) ) ) ) |
| 119 | 42 109 118 | mpbir2and | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ) |
| 120 | 5 97 96 | cncfcn | ⊢ ( ( 𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ ) → ( 𝑌 –cn→ 𝑋 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ) |
| 121 | 111 114 120 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 –cn→ 𝑋 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑌 ) Cn ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ) ) |
| 122 | 119 121 | eleqtrrd | ⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝑌 –cn→ 𝑋 ) ) |
| 123 | 5 6 8 105 4 122 2 3 | dvcnv | ⊢ ( 𝜑 → ( ℝ D ◡ 𝐹 ) = ( 𝑥 ∈ 𝑌 ↦ ( 1 / ( ( ℝ D 𝐹 ) ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) ) |