This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval in RR is compact. (Contributed by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccmp.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| icccmp.2 | ⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) | ||
| Assertion | icccmp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑇 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccmp.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 2 | icccmp.2 | ⊢ 𝑇 = ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 3 | eqid | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
| 4 | eqid | ⊢ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } = { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } | |
| 5 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝐴 ∈ ℝ ) | |
| 6 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝐵 ∈ ℝ ) | |
| 7 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝐴 ≤ 𝐵 ) | |
| 8 | elpwi | ⊢ ( 𝑢 ∈ 𝒫 𝐽 → 𝑢 ⊆ 𝐽 ) | |
| 9 | 8 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝑢 ⊆ 𝐽 ) |
| 10 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) | |
| 11 | 1 2 3 4 5 6 7 9 10 | icccmplem3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } ) |
| 12 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 [,] 𝑥 ) = ( 𝐴 [,] 𝐵 ) ) | |
| 13 | 12 | sseq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
| 14 | 13 | rexbidv | ⊢ ( 𝑥 = 𝐵 → ( ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
| 15 | 14 | elrab | ⊢ ( 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } ↔ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ∧ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
| 16 | 15 | simprbi | ⊢ ( 𝐵 ∈ { 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∣ ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝑥 ) ⊆ ∪ 𝑧 } → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) |
| 17 | 11 16 | syl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) |
| 18 | 17 | expr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
| 19 | 18 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) |
| 20 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 21 | 1 20 | eqeltri | ⊢ 𝐽 ∈ Top |
| 22 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 24 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 25 | 1 | unieqi | ⊢ ∪ 𝐽 = ∪ ( topGen ‘ ran (,) ) |
| 26 | 24 25 | eqtr4i | ⊢ ℝ = ∪ 𝐽 |
| 27 | 26 | cmpsub | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) ) |
| 28 | 21 23 27 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑧 ) ) ) |
| 29 | 19 28 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 30 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 31 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 32 | icc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) | |
| 33 | 30 31 32 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 34 | 33 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
| 35 | 34 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) = ( 𝐽 ↾t ∅ ) ) |
| 36 | rest0 | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) = { ∅ } ) | |
| 37 | 21 36 | ax-mp | ⊢ ( 𝐽 ↾t ∅ ) = { ∅ } |
| 38 | 35 37 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) = { ∅ } ) |
| 39 | 0cmp | ⊢ { ∅ } ∈ Comp | |
| 40 | 38 39 | eqeltrdi | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐵 < 𝐴 ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 41 | lelttric | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴 ) ) | |
| 42 | 29 40 41 | mpjaodan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐽 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 43 | 2 42 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑇 ∈ Comp ) |