This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvcnvre . (Contributed by Mario Carneiro, 19-Feb-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnvre.f | |- ( ph -> F e. ( X -cn-> RR ) ) |
|
| dvcnvre.d | |- ( ph -> dom ( RR _D F ) = X ) |
||
| dvcnvre.z | |- ( ph -> -. 0 e. ran ( RR _D F ) ) |
||
| dvcnvre.1 | |- ( ph -> F : X -1-1-onto-> Y ) |
||
| dvcnvre.c | |- ( ph -> C e. X ) |
||
| dvcnvre.r | |- ( ph -> R e. RR+ ) |
||
| dvcnvre.s | |- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ X ) |
||
| dvcnvre.t | |- T = ( topGen ` ran (,) ) |
||
| dvcnvre.j | |- J = ( TopOpen ` CCfld ) |
||
| dvcnvre.m | |- M = ( J |`t X ) |
||
| dvcnvre.n | |- N = ( J |`t Y ) |
||
| Assertion | dvcnvrelem2 | |- ( ph -> ( ( F ` C ) e. ( ( int ` T ) ` Y ) /\ `' F e. ( ( N CnP M ) ` ( F ` C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnvre.f | |- ( ph -> F e. ( X -cn-> RR ) ) |
|
| 2 | dvcnvre.d | |- ( ph -> dom ( RR _D F ) = X ) |
|
| 3 | dvcnvre.z | |- ( ph -> -. 0 e. ran ( RR _D F ) ) |
|
| 4 | dvcnvre.1 | |- ( ph -> F : X -1-1-onto-> Y ) |
|
| 5 | dvcnvre.c | |- ( ph -> C e. X ) |
|
| 6 | dvcnvre.r | |- ( ph -> R e. RR+ ) |
|
| 7 | dvcnvre.s | |- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ X ) |
|
| 8 | dvcnvre.t | |- T = ( topGen ` ran (,) ) |
|
| 9 | dvcnvre.j | |- J = ( TopOpen ` CCfld ) |
|
| 10 | dvcnvre.m | |- M = ( J |`t X ) |
|
| 11 | dvcnvre.n | |- N = ( J |`t Y ) |
|
| 12 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 13 | 8 12 | eqeltri | |- T e. Top |
| 14 | f1ofo | |- ( F : X -1-1-onto-> Y -> F : X -onto-> Y ) |
|
| 15 | forn | |- ( F : X -onto-> Y -> ran F = Y ) |
|
| 16 | 4 14 15 | 3syl | |- ( ph -> ran F = Y ) |
| 17 | cncff | |- ( F e. ( X -cn-> RR ) -> F : X --> RR ) |
|
| 18 | frn | |- ( F : X --> RR -> ran F C_ RR ) |
|
| 19 | 1 17 18 | 3syl | |- ( ph -> ran F C_ RR ) |
| 20 | 16 19 | eqsstrrd | |- ( ph -> Y C_ RR ) |
| 21 | imassrn | |- ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ ran F |
|
| 22 | 21 16 | sseqtrid | |- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ Y ) |
| 23 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 24 | 8 | unieqi | |- U. T = U. ( topGen ` ran (,) ) |
| 25 | 23 24 | eqtr4i | |- RR = U. T |
| 26 | 25 | ntrss | |- ( ( T e. Top /\ Y C_ RR /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ Y ) -> ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( ( int ` T ) ` Y ) ) |
| 27 | 13 20 22 26 | mp3an2i | |- ( ph -> ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( ( int ` T ) ` Y ) ) |
| 28 | 1 2 3 4 5 6 7 | dvcnvrelem1 | |- ( ph -> ( F ` C ) e. ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 29 | 8 | fveq2i | |- ( int ` T ) = ( int ` ( topGen ` ran (,) ) ) |
| 30 | 29 | fveq1i | |- ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 31 | 28 30 | eleqtrrdi | |- ( ph -> ( F ` C ) e. ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 32 | 27 31 | sseldd | |- ( ph -> ( F ` C ) e. ( ( int ` T ) ` Y ) ) |
| 33 | f1ocnv | |- ( F : X -1-1-onto-> Y -> `' F : Y -1-1-onto-> X ) |
|
| 34 | f1of | |- ( `' F : Y -1-1-onto-> X -> `' F : Y --> X ) |
|
| 35 | 4 33 34 | 3syl | |- ( ph -> `' F : Y --> X ) |
| 36 | ffun | |- ( `' F : Y --> X -> Fun `' F ) |
|
| 37 | funcnvres | |- ( Fun `' F -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
|
| 38 | 35 36 37 | 3syl | |- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) = ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 39 | dvbsss | |- dom ( RR _D F ) C_ RR |
|
| 40 | 2 39 | eqsstrrdi | |- ( ph -> X C_ RR ) |
| 41 | ax-resscn | |- RR C_ CC |
|
| 42 | 40 41 | sstrdi | |- ( ph -> X C_ CC ) |
| 43 | cncfss | |- ( ( ( ( C - R ) [,] ( C + R ) ) C_ X /\ X C_ CC ) -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) ) |
|
| 44 | 7 42 43 | syl2anc | |- ( ph -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) ) |
| 45 | f1of1 | |- ( F : X -1-1-onto-> Y -> F : X -1-1-> Y ) |
|
| 46 | 4 45 | syl | |- ( ph -> F : X -1-1-> Y ) |
| 47 | f1ores | |- ( ( F : X -1-1-> Y /\ ( ( C - R ) [,] ( C + R ) ) C_ X ) -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
|
| 48 | 46 7 47 | syl2anc | |- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 49 | 9 | tgioo2 | |- ( topGen ` ran (,) ) = ( J |`t RR ) |
| 50 | 8 49 | eqtri | |- T = ( J |`t RR ) |
| 51 | 50 | oveq1i | |- ( T |`t ( ( C - R ) [,] ( C + R ) ) ) = ( ( J |`t RR ) |`t ( ( C - R ) [,] ( C + R ) ) ) |
| 52 | 9 | cnfldtop | |- J e. Top |
| 53 | 7 40 | sstrd | |- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ RR ) |
| 54 | reex | |- RR e. _V |
|
| 55 | 54 | a1i | |- ( ph -> RR e. _V ) |
| 56 | restabs | |- ( ( J e. Top /\ ( ( C - R ) [,] ( C + R ) ) C_ RR /\ RR e. _V ) -> ( ( J |`t RR ) |`t ( ( C - R ) [,] ( C + R ) ) ) = ( J |`t ( ( C - R ) [,] ( C + R ) ) ) ) |
|
| 57 | 52 53 55 56 | mp3an2i | |- ( ph -> ( ( J |`t RR ) |`t ( ( C - R ) [,] ( C + R ) ) ) = ( J |`t ( ( C - R ) [,] ( C + R ) ) ) ) |
| 58 | 51 57 | eqtrid | |- ( ph -> ( T |`t ( ( C - R ) [,] ( C + R ) ) ) = ( J |`t ( ( C - R ) [,] ( C + R ) ) ) ) |
| 59 | 40 5 | sseldd | |- ( ph -> C e. RR ) |
| 60 | 6 | rpred | |- ( ph -> R e. RR ) |
| 61 | 59 60 | resubcld | |- ( ph -> ( C - R ) e. RR ) |
| 62 | 59 60 | readdcld | |- ( ph -> ( C + R ) e. RR ) |
| 63 | eqid | |- ( T |`t ( ( C - R ) [,] ( C + R ) ) ) = ( T |`t ( ( C - R ) [,] ( C + R ) ) ) |
|
| 64 | 8 63 | icccmp | |- ( ( ( C - R ) e. RR /\ ( C + R ) e. RR ) -> ( T |`t ( ( C - R ) [,] ( C + R ) ) ) e. Comp ) |
| 65 | 61 62 64 | syl2anc | |- ( ph -> ( T |`t ( ( C - R ) [,] ( C + R ) ) ) e. Comp ) |
| 66 | 58 65 | eqeltrrd | |- ( ph -> ( J |`t ( ( C - R ) [,] ( C + R ) ) ) e. Comp ) |
| 67 | f1of | |- ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) --> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
|
| 68 | 48 67 | syl | |- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) --> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 69 | 19 41 | sstrdi | |- ( ph -> ran F C_ CC ) |
| 70 | 21 69 | sstrid | |- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ CC ) |
| 71 | rescncf | |- ( ( ( C - R ) [,] ( C + R ) ) C_ X -> ( F e. ( X -cn-> RR ) -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) ) |
|
| 72 | 7 1 71 | sylc | |- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) |
| 73 | cncfcdm | |- ( ( ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ CC /\ ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> RR ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) <-> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) --> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
|
| 74 | 70 72 73 | syl2anc | |- ( ph -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) <-> ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) --> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 75 | 68 74 | mpbird | |- ( ph -> ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 76 | eqid | |- ( J |`t ( ( C - R ) [,] ( C + R ) ) ) = ( J |`t ( ( C - R ) [,] ( C + R ) ) ) |
|
| 77 | 9 76 | cncfcnvcn | |- ( ( ( J |`t ( ( C - R ) [,] ( C + R ) ) ) e. Comp /\ ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( C - R ) [,] ( C + R ) ) -cn-> ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) <-> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 78 | 66 75 77 | syl2anc | |- ( ph -> ( ( F |` ( ( C - R ) [,] ( C + R ) ) ) : ( ( C - R ) [,] ( C + R ) ) -1-1-onto-> ( F " ( ( C - R ) [,] ( C + R ) ) ) <-> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 79 | 48 78 | mpbid | |- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> ( ( C - R ) [,] ( C + R ) ) ) ) |
| 80 | 44 79 | sseldd | |- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) ) |
| 81 | eqid | |- ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
|
| 82 | 9 81 10 | cncfcn | |- ( ( ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ CC /\ X C_ CC ) -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) = ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) Cn M ) ) |
| 83 | 70 42 82 | syl2anc | |- ( ph -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) -cn-> X ) = ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) Cn M ) ) |
| 84 | 80 83 | eleqtrd | |- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) Cn M ) ) |
| 85 | 59 6 | ltsubrpd | |- ( ph -> ( C - R ) < C ) |
| 86 | 61 59 85 | ltled | |- ( ph -> ( C - R ) <_ C ) |
| 87 | 59 6 | ltaddrpd | |- ( ph -> C < ( C + R ) ) |
| 88 | 59 62 87 | ltled | |- ( ph -> C <_ ( C + R ) ) |
| 89 | elicc2 | |- ( ( ( C - R ) e. RR /\ ( C + R ) e. RR ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) <-> ( C e. RR /\ ( C - R ) <_ C /\ C <_ ( C + R ) ) ) ) |
|
| 90 | 61 62 89 | syl2anc | |- ( ph -> ( C e. ( ( C - R ) [,] ( C + R ) ) <-> ( C e. RR /\ ( C - R ) <_ C /\ C <_ ( C + R ) ) ) ) |
| 91 | 59 86 88 90 | mpbir3and | |- ( ph -> C e. ( ( C - R ) [,] ( C + R ) ) ) |
| 92 | ffun | |- ( F : X --> RR -> Fun F ) |
|
| 93 | 1 17 92 | 3syl | |- ( ph -> Fun F ) |
| 94 | fdm | |- ( F : X --> RR -> dom F = X ) |
|
| 95 | 1 17 94 | 3syl | |- ( ph -> dom F = X ) |
| 96 | 7 95 | sseqtrrd | |- ( ph -> ( ( C - R ) [,] ( C + R ) ) C_ dom F ) |
| 97 | funfvima2 | |- ( ( Fun F /\ ( ( C - R ) [,] ( C + R ) ) C_ dom F ) -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` C ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
|
| 98 | 93 96 97 | syl2anc | |- ( ph -> ( C e. ( ( C - R ) [,] ( C + R ) ) -> ( F ` C ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 99 | 91 98 | mpd | |- ( ph -> ( F ` C ) e. ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 100 | 9 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 101 | resttopon | |- ( ( J e. ( TopOn ` CC ) /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ CC ) -> ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( TopOn ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
|
| 102 | 100 70 101 | sylancr | |- ( ph -> ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( TopOn ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 103 | toponuni | |- ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( TopOn ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) -> ( F " ( ( C - R ) [,] ( C + R ) ) ) = U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
|
| 104 | 102 103 | syl | |- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) = U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 105 | 99 104 | eleqtrd | |- ( ph -> ( F ` C ) e. U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 106 | eqid | |- U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
|
| 107 | 106 | cncnpi | |- ( ( `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) Cn M ) /\ ( F ` C ) e. U. ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 108 | 84 105 107 | syl2anc | |- ( ph -> `' ( F |` ( ( C - R ) [,] ( C + R ) ) ) e. ( ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 109 | 38 108 | eqeltrrd | |- ( ph -> ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 110 | 11 | oveq1i | |- ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( J |`t Y ) |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) |
| 111 | ssexg | |- ( ( Y C_ RR /\ RR e. _V ) -> Y e. _V ) |
|
| 112 | 20 54 111 | sylancl | |- ( ph -> Y e. _V ) |
| 113 | restabs | |- ( ( J e. Top /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ Y /\ Y e. _V ) -> ( ( J |`t Y ) |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
|
| 114 | 52 22 112 113 | mp3an2i | |- ( ph -> ( ( J |`t Y ) |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 115 | 110 114 | eqtrid | |- ( ph -> ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 116 | 115 | oveq1d | |- ( ph -> ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) = ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ) |
| 117 | 116 | fveq1d | |- ( ph -> ( ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) = ( ( ( J |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 118 | 109 117 | eleqtrrd | |- ( ph -> ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) |
| 119 | 20 41 | sstrdi | |- ( ph -> Y C_ CC ) |
| 120 | resttopon | |- ( ( J e. ( TopOn ` CC ) /\ Y C_ CC ) -> ( J |`t Y ) e. ( TopOn ` Y ) ) |
|
| 121 | 100 119 120 | sylancr | |- ( ph -> ( J |`t Y ) e. ( TopOn ` Y ) ) |
| 122 | 11 121 | eqeltrid | |- ( ph -> N e. ( TopOn ` Y ) ) |
| 123 | topontop | |- ( N e. ( TopOn ` Y ) -> N e. Top ) |
|
| 124 | 122 123 | syl | |- ( ph -> N e. Top ) |
| 125 | toponuni | |- ( N e. ( TopOn ` Y ) -> Y = U. N ) |
|
| 126 | 122 125 | syl | |- ( ph -> Y = U. N ) |
| 127 | 22 126 | sseqtrd | |- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ U. N ) |
| 128 | 22 20 | sstrd | |- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ RR ) |
| 129 | difssd | |- ( ph -> ( RR \ Y ) C_ RR ) |
|
| 130 | 128 129 | unssd | |- ( ph -> ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) C_ RR ) |
| 131 | ssun1 | |- ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) |
|
| 132 | 131 | a1i | |- ( ph -> ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) |
| 133 | 25 | ntrss | |- ( ( T e. Top /\ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) C_ RR /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) -> ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) ) |
| 134 | 13 130 132 133 | mp3an2i | |- ( ph -> ( ( int ` T ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) C_ ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) ) |
| 135 | 134 31 | sseldd | |- ( ph -> ( F ` C ) e. ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) ) |
| 136 | f1of | |- ( F : X -1-1-onto-> Y -> F : X --> Y ) |
|
| 137 | 4 136 | syl | |- ( ph -> F : X --> Y ) |
| 138 | 137 5 | ffvelcdmd | |- ( ph -> ( F ` C ) e. Y ) |
| 139 | 135 138 | elind | |- ( ph -> ( F ` C ) e. ( ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) i^i Y ) ) |
| 140 | eqid | |- ( T |`t Y ) = ( T |`t Y ) |
|
| 141 | 25 140 | restntr | |- ( ( T e. Top /\ Y C_ RR /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ Y ) -> ( ( int ` ( T |`t Y ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) i^i Y ) ) |
| 142 | 13 20 22 141 | mp3an2i | |- ( ph -> ( ( int ` ( T |`t Y ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) i^i Y ) ) |
| 143 | restabs | |- ( ( J e. Top /\ Y C_ RR /\ RR e. _V ) -> ( ( J |`t RR ) |`t Y ) = ( J |`t Y ) ) |
|
| 144 | 52 20 55 143 | mp3an2i | |- ( ph -> ( ( J |`t RR ) |`t Y ) = ( J |`t Y ) ) |
| 145 | 50 | oveq1i | |- ( T |`t Y ) = ( ( J |`t RR ) |`t Y ) |
| 146 | 144 145 11 | 3eqtr4g | |- ( ph -> ( T |`t Y ) = N ) |
| 147 | 146 | fveq2d | |- ( ph -> ( int ` ( T |`t Y ) ) = ( int ` N ) ) |
| 148 | 147 | fveq1d | |- ( ph -> ( ( int ` ( T |`t Y ) ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) = ( ( int ` N ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 149 | 142 148 | eqtr3d | |- ( ph -> ( ( ( int ` T ) ` ( ( F " ( ( C - R ) [,] ( C + R ) ) ) u. ( RR \ Y ) ) ) i^i Y ) = ( ( int ` N ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 150 | 139 149 | eleqtrd | |- ( ph -> ( F ` C ) e. ( ( int ` N ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) ) |
| 151 | 126 | feq2d | |- ( ph -> ( `' F : Y --> X <-> `' F : U. N --> X ) ) |
| 152 | 35 151 | mpbid | |- ( ph -> `' F : U. N --> X ) |
| 153 | resttopon | |- ( ( J e. ( TopOn ` CC ) /\ X C_ CC ) -> ( J |`t X ) e. ( TopOn ` X ) ) |
|
| 154 | 100 42 153 | sylancr | |- ( ph -> ( J |`t X ) e. ( TopOn ` X ) ) |
| 155 | 10 154 | eqeltrid | |- ( ph -> M e. ( TopOn ` X ) ) |
| 156 | toponuni | |- ( M e. ( TopOn ` X ) -> X = U. M ) |
|
| 157 | feq3 | |- ( X = U. M -> ( `' F : U. N --> X <-> `' F : U. N --> U. M ) ) |
|
| 158 | 155 156 157 | 3syl | |- ( ph -> ( `' F : U. N --> X <-> `' F : U. N --> U. M ) ) |
| 159 | 152 158 | mpbid | |- ( ph -> `' F : U. N --> U. M ) |
| 160 | eqid | |- U. N = U. N |
|
| 161 | eqid | |- U. M = U. M |
|
| 162 | 160 161 | cnprest | |- ( ( ( N e. Top /\ ( F " ( ( C - R ) [,] ( C + R ) ) ) C_ U. N ) /\ ( ( F ` C ) e. ( ( int ` N ) ` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) /\ `' F : U. N --> U. M ) ) -> ( `' F e. ( ( N CnP M ) ` ( F ` C ) ) <-> ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) ) |
| 163 | 124 127 150 159 162 | syl22anc | |- ( ph -> ( `' F e. ( ( N CnP M ) ` ( F ` C ) ) <-> ( `' F |` ( F " ( ( C - R ) [,] ( C + R ) ) ) ) e. ( ( ( N |`t ( F " ( ( C - R ) [,] ( C + R ) ) ) ) CnP M ) ` ( F ` C ) ) ) ) |
| 164 | 118 163 | mpbird | |- ( ph -> `' F e. ( ( N CnP M ) ` ( F ` C ) ) ) |
| 165 | 32 164 | jca | |- ( ph -> ( ( F ` C ) e. ( ( int ` T ) ` Y ) /\ `' F e. ( ( N CnP M ) ` ( F ` C ) ) ) ) |